Histomorphological and Cytochemical Characters of Endocrine Cells of the Gastrointestinal Mucosa of Duck (Anas platyrhynchos)

Author(s):  
R. Patra ◽  
U.K. Mishra ◽  
S. Palai ◽  
P.R. Sahoo ◽  
S. Mohapatra

Background: It is known that balance diet is the key success for better production in poultry. The digestive physiology is regulated by the neurocrine and endocrine secretions. Growth, secretion, motility, cell signalling, vasoregulation, cell proliferation and differentiation of the epithelial cells of the alimentary canal are reported to be controlled by the peptides or amines released from the gut endocrine cells and enteric neurons. References particularly on systematic study of gastrointestinal endocrine cells in duck as regards to histomorphology and cytochemistry are gravely scanty. Hence the present investigation envisages authenticating the histomorphological characters and cytochemical behaviour of the gastrointestinal endocrine cells in duck.Methods: For this study the abdomen of six Khaki campbell ducks from either sex was cut open following euthanasia. Tissue pieces from different segments of gut were collected and processed routinely to get 7-8µ thick serial paraffin sections. The tissue sections were stained for evaluation of histomorphological and histochemical characters of the entero-endocrine cells.Result: A panel of seven cytochemical stains identified nine endocrine cell types in the digestive mucosa of Khaki Campbell duck i.e. basally granulated oval cell, densely granulated spindle shaped cell, densely granulated oval cell, diffusely granulated oval cell, pyramidal cell, densely granulated elongated cell, densely granulated pyriform cell, peripherally granulated spherical cell and non-argentaffin chromaffin oval cell. The cells occurred in single or in small clusters in the basal or middle or neck part of glandular epithelium or in the surface epithelium. All the endocrine cells were ‘close type’. Cytochemically they were four types i.e. argentaffin, argyrophil, chromaffin and APUD (Amine precursor uptake and decarboxylation) cells.

Development ◽  
1987 ◽  
Vol 100 (4) ◽  
pp. 661-671 ◽  
Author(s):  
B. Kramer ◽  
A. Andrew ◽  
B.B. Rawdon ◽  
P. Becker

To determine whether mesenchyme plays a part in the differentiation of gut endocrine cells, proventricular endoderm from 4- to 5-day chick or quail embryos was associated with mesenchyme from the dorsal pancreatic bud of chick embryos of the same age. The combinations were grown on the chorioallantoic membranes of host chick embryos until they reached a total incubation age of 21 days. Proventricular or pancreatic endoderm of the appropriate age and species reassociated with its own mesenchyme provided the controls. Morphogenesis in the experimental grafts corresponded closely to that in proventricular controls, i.e. the pancreatic mesenchyme supported the development of proventricular glands from proventricular endoderm. Insulin, glucagon and somatostatin cells and cells with pancreatic polypeptide-like immunoreactivity differentiated in the pancreatic controls. The latter three endocrine cell types, together with neurotensin and bombesin/gastrin-releasing polypeptide (GRP) cells, developed in proventricular controls and experimental grafts. The proportions of the major types common to proventriculus and pancreas (somatostatin and glucagon cells) were in general similar when experimental grafts were compared with proventricular controls but different when experimental and pancreatic control grafts were compared. Hence pancreatic mesenchyme did not materially affect the proportions of these three cell types in experimental grafts, induced no specific pancreatic (insulin) cell type and allowed the differentiation of the characteristic proventricular endocrine cell types, neurotensin and bombesin/GRP cells. However, an important finding was a significant reduction in the proportion of bombesin/GRP cells, attributable in part to a decrease in their number and in part to an increase in the numbers of endocrine cells of the other types. This indicates that mesenchyme may well play a part in determining the regional specificity of populations of gut endocrine cells.


1989 ◽  
Vol 262 (1) ◽  
pp. 83-89 ◽  
Author(s):  
K J Föhr ◽  
J Scott ◽  
G Ahnert-Hilger ◽  
M Gratzl

The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.


Development ◽  
1984 ◽  
Vol 82 (1) ◽  
pp. 131-145
Author(s):  
B. B. Rawdon ◽  
Beverley Kramer ◽  
Ann Andrew

The aim of this experiment was to find out whether or not, at early stages of development, progenitors of the various types of gut endocrine cells are localized to one or more specific regions of the gastrointestinal tract. Transverse strips of blastoderm two to four somites in length were excised between the levels of somites 5 and 27 in chick embryos at 5- to 24-somite stages and were cultured as chorioallantoic grafts. The distribution of endocrine cells in the grafts revealed confined localization of progenitor cells only in the case of insulinimmunoreactive cells. Theprogenitors of cells with somatostatin-, pancreatic polypeptide-, glucagon-, secretin-, gastrin/CCK-, motilin-, neurotensin- and serotonin-like immunoreactivity were distributed along the length of the presumptive gut at the time of explantation; indeed, in many cases they were more widespread than are their differentiated progeny in normal gut of the same age. This finding indicates that conditions in grafts must differ from those that operate in the intact embryo. Also it may explain the occurrence of ectopic gut or pancreatic endocrine cells in tumours of the digestive tract.


2000 ◽  
Vol 116 (4) ◽  
pp. 507-520 ◽  
Author(s):  
Duk-Su Koh ◽  
Mark W. Moody ◽  
Toan D. Nguyen ◽  
Bertil Hille

We asked if the mechanisms of exocytosis and its regulation in epithelial cells share features with those in excitable cells. Cultured dog pancreatic duct epithelial cells were loaded with an oxidizable neurotransmitter, dopamine or serotonin, and the subsequent release of these exogenous molecules during exocytosis was detected by carbon-fiber amperometry. Loaded cells displayed spontaneous exocytosis that may represent constitutive membrane transport. The quantal amperometric events induced by fusion of single vesicles had a rapid onset and decay, resembling those in adrenal chromaffin cells and serotonin-secreting leech neurons. Quantal events were frequently preceded by a “foot,” assumed to be leak of transmitters through a transient fusion pore, suggesting that those cell types share a common fusion mechanism. As in neurons and endocrine cells, exocytosis in the epithelial cells could be evoked by elevating cytoplasmic Ca2+ using ionomycin. Unlike in neurons, hyperosmotic solutions decreased exocytosis in the epithelial cells, and giant amperometric events composed of many concurrent quantal events were observed occasionally. Agents known to increase intracellular cAMP in the cells, such as forskolin, epinephrine, vasoactive intestinal peptide, or 8-Br-cAMP, increased the rate of exocytosis. The forskolin effect was inhibited by the Rp-isomer of cAMPS, a specific antagonist of protein kinase A, whereas the Sp-isomer, a specific agonist of PKA, evoked exocytosis. Thus, PKA is a downstream effector of cAMP. Finally, activation of protein kinase C by phorbol-12-myristate-13-acetate also increased exocytosis. The PMA effect was not mimicked by the inactive analogue, 4α-phorbol-12,13-didecanoate, and it was blocked by the PKC antagonist, bisindolylmaleimide I. Elevation of intracellular Ca2+ was not needed for the actions of forskolin or PMA. In summary, exocytosis in epithelial cells can be stimulated directly by Ca2+, PKA, or PKC, and is mediated by physical mechanisms similar to those in neurons and endocrine cells.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1157-1163 ◽  
Author(s):  
B.H. Upchurch ◽  
B.P. Fung ◽  
G. Rindi ◽  
A. Ronco ◽  
A.B. Leiter

The hormone peptide YY is produced by endocrine cells in the pancreas, ileum and colon. We have previously shown that peptide YY is coexpressed in all four islet cell types in the murine pancreas when they first appear, suggesting a common peptide YY-producing progenitor. In the colon, peptide YY has been frequently identified in glucagon-expressing L-type endocrine cells. Characterization of colonic endocrine tumors in transgenic mice expressing simian virus 40 large T antigen under the control of the peptide YY gene 5′ flanking region revealed tumor cells producing not only peptide YY and glucagon, but also neurotensin, cholecystokinin, substance P, serotonin, secretin, and gastrin. This suggested that multiple enteroendocrine lineages were related to peptide YY-producing cells. Subsequent examination of the ontogeny of colonic endocrine differentiation in nontransgenic mice revealed that peptide YY was the first hormone to appear during development, at embryonic day 15.5. Between embryonic days 16.5 and 18.5, cells expressing glucagon, cholecystokinin, substance P, serotonin, secretin, neurotensin, gastrin and somatostatin first appeared and peptide YY was coexpressed in each cell type at this time. Peptide YY coexpression continued in a significant fraction of most enteroendocrine cell types throughout fetal and postnatal development and into adulthood, with the exception of serotonin-producing cells. This latter population of cells expanded dramatically after birth with rare coexpression of peptide YY. These studies indicate that expression of peptide YY is an early event in colonic endocrine differentiation and support the existence of a common progenitor for all endocrine cells in the colon.


1997 ◽  
Vol 110 (15) ◽  
pp. 1683-1692 ◽  
Author(s):  
P. Rosay ◽  
S.A. Davies ◽  
Y. Yu ◽  
A. Sozen ◽  
K. Kaiser ◽  
...  

Calcium is a ubiquitous second messenger that plays a critical role in both excitable and non-excitable cells. Calcium mobilisation in identified cell types within an intact renal epithelium, the Drosophila melanogaster Malpighian tubule, was studied by GAL4-directed expression of an aequorin transgene. CAP2b, a cardioactive neuropeptide that stimulates fluid secretion by a mechanism involving nitric oxide, causes a rapid, dose-dependent rise in cytosolic calcium in only a single, genetically-defined, set of 77 principal cells in the main (secretory) segment of the tubule. In the absence of external calcium, the CAP2b-induced calcium response is abolished. In Ca2+-free medium, the endoplasmic reticulum Ca2+-ATPase inhibitor, thapsigargin, elevates [Ca2+]i only in the smaller stellate cells, suggesting that principal cells do not contain a thapsigargin-sensitive intracellular pool. Assays for epithelial function confirm that calcium entry is essential for CAP2b to induce a physiological response in the whole organ. Furthermore, the data suggest a role for calcium signalling in the modulation of the nitric oxide signalling pathway in this epithelium. The GAL4-targeting system allows general application to studies of cell-signalling and pharmacology that does not rely on invasive or cytotoxic techniques.


1992 ◽  
Vol 101 (4) ◽  
pp. 795-799
Author(s):  
C. Saulnier-Michel ◽  
M. Fromont-Racine ◽  
R. Pictet

RW cells are pancreatic endocrine RIN cells that have been stably transfected with a chimeric gene that places the expression of the dominant selection gpt gene under the control of the insulin gene regulatory sequences. These RW cells were examined for hormone content using immunocytochemistry. This analysis shows that: first, there are cells that are negative for insulin although they were cultured under selective pressure. Second, there is a higher proportion of somatostatin-producing cells than in the parental RIN cells; these somatostatin cells form two populations: one of cells containing only somatostatin and, surprisingly, one made of cells containing both insulin and somatostatin. Thus: (1) expression of the transfected and endogenous insulin regulatory sequences is not regulated in a coordinate fashion; (2) the presence of both hormones in the same cell suggests that the regulation of the expression of insulin and somatostatin genes and the differentiation pathway of the two respective cell types may be closely related.


1985 ◽  
Vol 101 (1) ◽  
pp. 305-311 ◽  
Author(s):  
P Kristensen ◽  
L S Nielsen ◽  
J Grøndahl-Hansen ◽  
P B Andresen ◽  
L I Larsson ◽  
...  

We immunocytochemically stained rat pituitary glands using antibodies against plasminogen activators of the tissue type (t-PA) and the urokinase type (u-PA). A large population of endocrine cells in the anterior lobe of the gland displayed intense cytoplasmic immunoreactivity with anti-t-PA. In some areas of the intermediate lobe we found a weak staining, and we observed weakly staining granular structures in the posterior lobe. Controls included absorption of the antibodies with highly purified t-PA. In addition, SDS PAGE followed by immunoblotting of pituitary gland extracts revealed only one band with an electrophoretic mobility similar to that of t-PA when stained with anti-t-PA IgG. No u-PA immunoreactivity was detected in the rat pituitary gland. Sequential staining experiments using antibodies against growth hormone and t-PA demonstrated that the t-PA-immunoreactive cells constitute a large subpopulation of the growth hormone-containing cells. These findings represent the first direct evidence for the presence of t-PA in cell types other than endothelial cells in the intact normal organism. In this article we discuss the implications of the results for a possible role of t-PA in the posttranslational processing of prohormones.


Sign in / Sign up

Export Citation Format

Share Document