scholarly journals PHENOTYPIC CHARACTERISTICS IN OSTEOGENESIS IMPERFECTA PATIENTS

Author(s):  
Olga N. Ignatovich

Osteogenesis imperfecta (OI) is a heterogeneous hereditary disease characterized by low bone density and frequent fractures. There are presented data of molecular genetic study and examination of 45 children with a clinically established diagnosis of types I, III and IV. The aim of investigation. To study the variety of clinical manifestations in OI children with and to compare with the identified genetic mutations in the genes COL1A1 and COL1A2. Materials and methods. The data of molecular genetic research and evaluation of clinical manifestations of 45 children with diagnosis OI of types I, III and IV is presented. Results. In the study, mutations in the genes COL1A1 and COL1A2 were detected in 43 (95.6%). The most of the mutations (74,4%) were found to be localized in the gene COL1A1 (n=32), smaller (25.6%) - in the gene COL1A2 (n=11). Glycine-to-serine substitutions in the Gly-X-Y triplet are the most frequent type of mutation among missense mutations. In children with type I qualitative mutations were found to be less common than in types III and IV (representing clinically severe and moderate, respectively). Conclusion. Majority of OI patients had mutations in the collagen genes. The most frequent mutation was the missense mutation, the most often detected in children with OI type III having a severe course, leading to a qualitative violation of collagen.

2020 ◽  
Vol 10 (2) ◽  
pp. 115-121
Author(s):  
R. N. Mustafin ◽  
E. K. Khusnutdinova

Neurofi bromatosis type I (NF1) is a common hereditary tumour syndrome with autosomal dominant type of inheritance. Average worldwide incidence rate of NF1 is 1:3000, equal in men and women. Th e disease develops with a heterozygous mutation in the oncosupressor neurofi bromin-encoding gene NF1. No NF1-associated most common mutations have been found, with over 1400 mutations being described along the gene. No clinical and genetic correlations are observed for NF1, and its symptoms may vary considerably within same inheritance group. Typical NF1 manifestations include pigmented patches and multiple cutaneous or subcutaneous neurofi bromas, oft en disfi guring in degree. Pathogenetic therapy for NF1 is not yet developed, whilst surgical tumourectomy may lead to recurrence and new tumour development in other localities on the body. Molecular genetic research on putative interfaces with epigenetic factors and gene expression patterns may open promising future avenues. Further, establishing a marker NF1 mutation in NF1 patients will allow secondary prevention of the disease. A survey of russian NF1-related literature reveals prevalence of individual clinical case descriptions. In the Russian Federation, studies of NF1-associated mutations in gene NF1 originate from Moscow and Bashkortostan, which sets off advancement of Bashkir medical genetics and urges further developments. In Bashkortostan, 10 NF1-associated mutations were described from 16 patients. Th e reported mutations с.1278G>A (p.Trp426Х), с.1570G>A (p.Glu540Lys), с.1973_1974delTC (р.Leu658ProfsX10), с.3526_3528delAGA (p.Arg1176del), с.3826delC (р.Arg1276GlufsX8), с.4514+5G>A, c.5758_5761delTTGA (p.Leu1920AsnfsX7) in the NF1 gene are new to science. Further research into other genes’ and microRNA expression in patients with various clinical manifestations of NF1 should be aimed at discovering its possible involvement in disease pathogenesis.


Author(s):  
А.Р. Зарипова ◽  
Л.Р. Нургалиева ◽  
А.В. Тюрин ◽  
И.Р. Минниахметов ◽  
Р.И. Хусаинова

Проведено исследование гена интерферон индуцированного трансмембранного белка 5 (IFITM5) у 99 пациентов с несовершенным остеогенезом (НО) из 86 неродственных семей. НО - клинически и генетически гетерогенное наследственное заболевание соединительной ткани, основное клиническое проявление которого - множественные переломы, начиная с неонатального периода жизни, зачастую приводящие к инвалидизации с детского возраста. К основным клиническим признакам НО относятся голубые склеры, потеря слуха, аномалия дентина, повышенная ломкость костей, нарушения роста и осанки с развитием характерных инвалидизирующих деформаций костей и сопутствующих проблем, включающих дыхательные, неврологические, сердечные, почечные нарушения. НО встречается как у мужчин, так и у женщин. До сих пор не определена степень генетической гетерогенности заболевания. На сегодняшний день известно 20 генов, вовлеченных в патогенез НО, и исследователи разных стран продолжают искать новые гены. В последнее десятилетие стало известно, что аутосомно-рецессивные, аутосомно-доминантные и Х-сцепленные мутации в широком спектре генов, кодирующих белки, которые участвуют в синтезе коллагена I типа, его процессинге, секреции и посттрансляционной модификации, а также в белках, которые регулируют дифференцировку и активность костеобразующих клеток, вызывают НО. Мутации в гене IFITM5, также называемом BRIL (bone-restricted IFITM-like protein), участвующем в формировании остеобластов, приводят к развитию НО типа V. До 5% пациентов имеют НО типа V, который характеризуется образованием гиперпластического каллуса после переломов, кальцификацией межкостной мембраны предплечья и сетчатым рисунком ламелирования, наблюдаемого при гистологическом исследовании кости. В 2012 г. гетерозиготная мутация (c.-14C> T) в 5’-нетранслируемой области (UTR) гена IFITM5 была идентифицирована как основная причина НО V типа. В представленной работе проведен анализ гена IFITM5 и идентифицирована мутация c.-14C>T, возникшая de novo, у одного пациента с НО, которому впоследствии был установлен V тип заболевания. Также выявлены три известных полиморфных варианта: rs57285449; c.80G>C (p.Gly27Ala) и rs2293745; c.187-45C>T и rs755971385 c.279G>A (p.Thr93=) и один ранее не описанный вариант: c.128G>A (p.Ser43Asn) AGC>AAC (S/D), которые не являются патогенными. В статье уделяется внимание особенностям клинических проявлений НО V типа и рекомендуется определение мутации c.-14C>T в гене IFITM5 при подозрении на данную форму заболевания. A study was made of interferon-induced transmembrane protein 5 gene (IFITM5) in 99 patients with osteogenesis imperfecta (OI) from 86 unrelated families and a search for pathogenic gene variants involved in the formation of the disease phenotype. OI is a clinically and genetically heterogeneous hereditary disease of the connective tissue, the main clinical manifestation of which is multiple fractures, starting from the natal period of life, often leading to disability from childhood. The main clinical signs of OI include blue sclera, hearing loss, anomaly of dentin, increased fragility of bones, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, and renal disorders. OI occurs in both men and women. The degree of genetic heterogeneity of the disease has not yet been determined. To date, 20 genes are known to be involved in the pathogenesis of OI, and researchers from different countries continue to search for new genes. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells cause OI. Mutations in the IFITM5 gene, also called BRIL (bone-restricted IFITM-like protein), involved in the formation of osteoblasts, lead to the development of OI type V. Up to 5% of patients have OI type V, which is characterized by the formation of a hyperplastic callus after fractures, calcification of the interosseous membrane of the forearm, and a mesh lamellar pattern observed during histological examination of the bone. In 2012, a heterozygous mutation (c.-14C> T) in the 5’-untranslated region (UTR) of the IFITM5 gene was identified as the main cause of OI type V. In the present work, the IFITM5 gene was analyzed and the de novo c.-14C> T mutation was identified in one patient with OI who was subsequently diagnosed with type V of the disease. Three known polymorphic variants were also identified: rs57285449; c.80G> C (p.Gly27Ala) and rs2293745; c.187-45C> T and rs755971385 c.279G> A (p.Thr93 =) and one previously undescribed variant: c.128G> A (p.Ser43Asn) AGC> AAC (S / D), which were not pathogenic. The article focuses on the features of the clinical manifestations of OI type V, and it is recommended to determine the c.-14C> T mutation in the IFITM5 gene if this form of the disease is suspected.


2019 ◽  
pp. 71-76
Author(s):  
K. M. Lisova ◽  
I. V. Kalinovska ◽  
O. M. Yuzko

Pregnancy miscarriage is a consequence of many factors. The aim of the study was to analyze the effect of miscarriage gene on embryometric, ultrasound, hormonal, immunological parameters in pregnant women, and to evaluate its prognostic value. The main group includes 31 pregnant women who had clinical signs of miscarriage in current or previous pregnancy. The control group consists of 32 healthy pregnant women whose clinical-paraclinical parameters served as a control to compare the data of the pregnancy survey of the main surveillance group. A general clinical examination and a special obstetrical examination (complaints, anamnesis, general medical examination, obstetric examination), biochemical studies (determination of hormones of the fetoplacental complex in blood serum of pregnant women), ultrasound, immunological studies, histological studies of the placenta, molecular genetic study A1166C polymorphism of the AGTR1 gene were made. In the course of the research, the genetic determinism of miscarriage was discovered. The polymorphism of the A1166C of the AGTR1 gene was considered as a prognostic marker of miscarriage in early gestational term and preeclampsia in the second half of pregnancy. A reliable marker of abortion was the maternal genotype 1166AC for the genome AGTR1. The risk of occurrence of clinical manifestations of abortion increased five times. At simultaneous influence of all prognostic factors the risk of abortion increased 6,25 times. Detection of genetic markers of pregnancy miscarriage will allow early correction of this pathology and prevent perinatal loss.


2005 ◽  
Vol 44 (04) ◽  
pp. 487-497 ◽  
Author(s):  
G. Mátyás ◽  
B. Steinmann ◽  
D. Baumgartner ◽  
C. Baumgartner

Summary Objectives: Marfan syndrome (MFS) is an autosomal dominant inherited connective tissue disorder caused by mutations in the fibrillin-1 (FBN1) gene with variable clinical manifestations in the cardiovascular, musculoskeletal and ocular systems. Methods: Data of molecular genetic analysis and a catalogue of clinical manifestations including aortic elastic parameters were mined in order to (i) assess aortic abnormality before and during medical treatment, and to (ii) identify novel correlations between the genotype and phenotype of the disease using hierarchical cluster analysis and logistic regression analysis. A score measure describing the similarity between a patient’s clinical symptoms and a characteristic phenotype class was introduced. Results: A probabilistic model for monitoring the loss of aortic elasticity was built on merely aortic parameters of 34 patients with classic MFS and 43 control subjects showing a sensitivity of 82% and a specificity of 96%. The clinical phenotypes of 100 individuals with classical or suspected MFS were clustered yielding four different phenotypic expressions. The highest correlation was found between FBN1 missense mutations, which manifested as ectopia lentis, skeletal major and skin minor criteria, and two out of four clustered phenotypes. The probability of the presence of a missense mutation in both phenotype classes is approximately 70%. Conclusions: Monitoring of aortic elastic properties during medical treatment may serve as additional criterion to indicate elective surgical interventions. Genotype-phenotype correlation may contribute to anticipate the clinical consequences of specific FBN1 mutations more comprehensively and may be helpful to identify MFS patients at risk at an early stage of disease.


2009 ◽  
Vol 57 (5) ◽  
pp. 662-667 ◽  
Author(s):  
Zhuo Wang ◽  
Zheng Yang ◽  
Zunfu Ke ◽  
Shicong Yang ◽  
Huijuan Shi ◽  
...  

1998 ◽  
pp. 96-100 ◽  
Author(s):  
M Peter ◽  
K Bunger ◽  
SL Drop ◽  
WG Sippell

We performed a molecular genetic study in two patients with congenital hypoaldosteronism. An original study of these patients was published in this Journal in 1982. Both index cases, a girl (patient 1) and a boy (patient 2). presented with salt-wasting and failure to thrive in the neonatal period. Parents of patient 1 were not related, whereas the parents of patient 2 were cousins. Endocrine studies had shown a defect in 18-oxidation of 18-OH-corticosterone in patient 1 and a defect in the 18-hydroxylation of corticosterone in patient 2. Plasma aldosterone was decreased in both patients, whereas 18-OH-corticosterone was elevated in patient 1 and decreased in patient 2. Plasma corticosterone and 11-deoxycorticosterone were elevated in both patients, whereas cortisol and its precursors were in the normal range. According to the nomenclature proposed by Ulick, the defects are termed corticosterone methyl oxidase (CMO) deficiency type II in patient 1, and type I in patient 2 respectively. Genetic defects in the gene CYP11B2 encoding aldosterone synthase have been described in a few cases. In patient 1, we identified only one heterozygous amino acid substitution (V386A) in exon 7, which has no deleterious effect on the enzyme activity. In patient 2 and his older brother, we identified a homozygous single base exchange (G to T) in codon 255 (GAG), causing a premature stop codon E255X (TAG). The mutant enzyme has lost the five terminal exons containing the haem binding site, and is thus a loss of function enzyme. This is only the second report of a patient with CMO deficiency type II without a mutation in the exons and exon-intron boundaries, whereas the biochemical phenotype of the two brothers with CMO deficiency type I can be explained by the patient's genotype.


2002 ◽  
Vol 49 (2) ◽  
pp. 433-441 ◽  
Author(s):  
Anna Gajko-Galicka

Osteogenesis imperfecta (OI), commonly known as "brittle bone disease", is a dominant autosomal disorder characterized by bone fragility and abnormalities of connective tissue. Biochemical and molecular genetic studies have shown that the vast majority of affected individuals have mutations in either the COL1A1 or COL1A2 genes that encode the chains of type I procollagen. OI is associated with a wide spectrum of phenotypes varying from mild to severe and lethal conditions. The mild forms are usually caused by mutations which inactivate one allele of COL1A1 gene and result in a reduced amount of normal type I collagen, while the severe and lethal forms result from dominant negative mutations in COL1A1 or COL1A2 which produce structural defects in the collagen molecule. The most common mutations are substitutions of glycine residues, which are crucial to formation and function of the collagen triple helix, by larger amino acids. Although type I collagen is the major structural protein of both bone and skin, the mutations in type I collagen genes cause a bone disease. Some reports showed that the mutant collagen can be expressed differently in bone and in skin. Since most mutations identified in OI are dominant negative, the gene therapy requires a fundamentally different approach from that used for genetic-recessive disorders. The antisense therapy, by reducing the expression of mutant genes, is able to change a structural mutation into a null mutation, and thus convert severe forms of the disease into mild OI type I.


Author(s):  
A. V. Bankole ◽  
E. A. Chernyak

Red cell pyruvate kinase deficiency is the most common glycolytic defect causing congenital nonspherocytic hemolytic anemia. Pyruvate kinase is the enzyme involved in the last step of glycolysis – the transfer of a phosphate group from phosphoenolpyruvate producing the enolate of pyruvate and ATP (50 % of total energy ATP of erythrocytes). ATP deficiency directly shortened red cell lifespan. Affected red blood cells are destroyed in the splenic capillaries, leading to the development of chronic hemolytic anemia. It is an autosomal recessive disease, caused by homozygous and compound heterozygous mutations in the PKLR gene. There are no exact data on the incidence of pyruvate kinase deficiency, but the estimated frequency varies from 3: 1,000,000 to 1:20,000. The clinical features of the disease and the severity are highly variable. Diagnosis of pyruvate kinase deficiency is based on the determination of pyruvate kinase activity and molecular genetic study of the PKLR gene. The variety of clinical manifestations, possible complications, as well as the inaccessibility of diagnostic methods complicate the diagnosis.


2020 ◽  
Vol 24 ◽  
pp. 00006
Author(s):  
Natalia Badmaeva ◽  
Dolgor Tubanova ◽  
Evgenia Bukharova

The paper presents the results of studying the taxonomic relationships of Leymus secalinus (Georgi) Tzvelev. and L. littoralis (Griseb.) Peschkova in different geographical sites based on a comparison of ITS1-5.8S-ITS2 sequences of nuclear rDNA and cpDNA matK. Molecular genetic research of these species allowed us to expand the area of L. secalinus to the Aldan River basin (Yakutia).


2021 ◽  
Vol 37 (4) ◽  
pp. 43-50
Author(s):  
E.S. Naumova

A molecular genetic study of Kluyveromyces lactis yeasts isolated from various dairy products in the countries of the former Soviet Union and other regions of the world has been carried out. Based on physiological tests, four strains were selected that carry different LAC loci and are characterized by good fermentation intensity: VKM Y-1339 (LAC3), VKM Y-1333 (LAC3), NRRL Y-1118 (LAC1), and NRRL Y-1140 (LAC2). Eleven hybrids of the selected strains with different rates of lactose fermentation were obtained. No correlation was found between the intensity of lactose fermentation and the amino acid sequences of the LAC12 lactose permease gene of the LAC1, LAC2, and LAC3 loci. Apparently, a specific combination of genotypes of crossed strains has a more significant effect on the fermentation activity. The results obtained showed that inter-strain hybridization of K. lactis dairy yeast is an effective method for creating new strains with high fermentation capacity. Hybrids H2-3 (NRRL Y-1118 × VKM Y-1333) and H3-3 (NRRL Y-1140 × VKM Y-1333) with the highest ability to ferment lactose are of interest for further molecular genetic research and breeding programs. Key words: Kluyveromyces lactis, β-galactosidase, lactose permease, LAC4, LAC12, LAC1 locus, LAC2 locus, LAC3 locus, inter-strain hybridization, lactose fermentation, heterosis Acknowledgment - The authors are grateful to the Genomic Center of the Kurchatov Institute SRC---GosNIIgentika for sequencing the nucleotide sequences of the LAC12 genes for lactose permease on the Applied Biosystems 3730 automated analyzer. Funding - This work was supported by an internal grant from the National Research Center Kurchatov Institute (order of the National Research Center Kurchatov Institute No. 1779).


Sign in / Sign up

Export Citation Format

Share Document