scholarly journals Effects of Salinity and Plant Growth Promoting Rhizobacteria on Some Physiological Traits and Grain Yield of Hulled Wheat Compared to Durum Wheat

2016 ◽  
Vol 6 (21) ◽  
pp. 105-119
Author(s):  
S. Tabatabaei ◽  
P. Ehsanzadeh ◽  
◽  
2019 ◽  
Vol 70 (8) ◽  
pp. 649
Author(s):  
Noura Bechtaoui ◽  
Abdelkhalek El Alaoui ◽  
Anas Raklami ◽  
Loubna Benidire ◽  
Abdel-ilah Tahiri ◽  
...  

Intercropping is a farming practice that fights pests and diseases and improves plant growth. The use of plant growth-promoting rhizobacteria (PGPR) strains to boost the yield of intercrops constitutes a promising tool in agricultural practice. This study investigated the impact of single inoculation and co-inoculation with PGPR on plant biomass and phosphorus (P) and nitrogen (N) concentrations under different cropping systems. Two PGPR strains with different traits were selected: PGP13 (Rahnella aquatilis) and PS11 (Pseudomonas sp.). A greenhouse experiment was designed using durum wheat (Triticum durum L.) and faba bean (Vicia faba L.), sole cropped or intercropped, including four inoculation treatments: (i) uninoculated, (ii) inoculated with PS11 (iii) inoculated with PGP13, and (iv) co-inoculated with PS11 + PGP13. Co-inoculation under the intercropping system improved plant dry matter and enhanced bean pod and wheat spike weights to 685.83% and 385.83%, respectively, of the values for uninoculated, intercropped plants. Higher P and N concentrations were detected in intercropped, co-inoculated plants and in bean pods and wheat spikes. The results were then submitted to principal component analysis, showing that treatments with higher biomass and nutrient concentrations were strongly correlated with intercropped, co-inoculated plants.


Author(s):  
Guriqbal Singh ◽  
Narinder Singh ◽  
Veena Khanna

The experiment was conducted to study the effect of four levels of phosphorus (0, 20, 30 and 40 kg P2O5 ha-1) and four biofertilizer treatments [uninoculated control, Rhizobium, plant growth promoting rhizobacteria (PGPR) and Rhizobium + PGPR] on growth and grain yield of lentil. The experiment was conducted in factorial randomized complete block design (RCBD) with three replications. The periodic data recorded at 30, 60, 90, 120 days after sowing (DAS) and at harvest showed that the highest growth in various parameters i.e. plant height, branches plant-1 and shoot dry matter accumulation was recorded with application of 40 kg P2O5 ha-1, however, it was at par with 30 P2O5 ha-1. Among the biofertilizers, Rhizobium + PGPR treatment gave maximum values of growth parameters like plant height, branches plant-1 and shoot dry matter accumulation at all the stages. At 30-60 DAS, the maximum crop growth rate (CGR) was recorded with the application of 40 kg P2O5 ha-1 (71.3 kg ha-1 day-1) and co-inoculation of Rhizobium and PGPR (72.0 kg ha-1 day-1). Application of 40 P2O5 ha-1 and use of coinoculation (Rhizobium + PGPR) provided the highest grain yields. The study highlights the importance of phosphorus application and biofertilizers inoculation for improving the growth and grain yield of lentil.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e7905 ◽  
Author(s):  
Douglas M. Zeffa ◽  
Lucas H. Fantin ◽  
Alessandra Koltun ◽  
André L.M. de Oliveira ◽  
Maria P.B.A. Nunes ◽  
...  

Background The co-inoculation of soybean with Bradyrhizobium and other plant growth-promoting rhizobacteria (PGPR) is considered a promising technology. However, there has been little quantitative analysis of the effects of this technique on yield variables. In this context, the present study aiming to provide a quantification of the effects of the co-inoculation of Bradyrhizobium and PGPR on the soybean crop using a meta-analysis approach. Methods A total of 42 published articles were examined, all of which considered the effects of co-inoculation of PGPR and Bradyrhizobium on the number of nodules, nodule biomass, root biomass, shoot biomass, shoot nitrogen content, and grain yield of soybean. We also determined whether the genus of the PGPR used as co-inoculant, as well as the experimental conditions, altered the effect size of the PGPR. Results The co-inoculation technology resulted in a significant increase in nodule number (11.40%), nodule biomass (6.47%), root biomass (12.84%), and shoot biomass (6.53%). Despite these positive results, no significant increase was observed in shoot nitrogen content and grain yield. The response of the co-inoculation varied according to the PGPR genus used as co-inoculant, as well as with the experimental conditions. In general, the genera Azospirillum, Bacillus, and Pseudomonas were more effective than Serratia. Overall, the observed increments were more pronounced under pot than that of field conditions. Collectively, this study summarize that co-inoculation improves plant development and increases nodulation, which may be important in overcoming nutritional limitations and potential stresses during the plant growth cycle, even though significant increases in grain yield have not been evidenced by this data meta-analysis.


BioControl ◽  
2016 ◽  
Vol 61 (6) ◽  
pp. 769-780 ◽  
Author(s):  
Afroz Rais ◽  
Muhammad Shakeel ◽  
Fauzia Yusuf Hafeez ◽  
Muhammad Nadeem Hassan

2013 ◽  
Vol 46 (1) ◽  
pp. 49-67 ◽  
Author(s):  
M. Janmohammadi ◽  
M.R. Bihamta ◽  
F. Ghasemzadeh

Abstract Contamination of soils by lead (Pb) is of widespread occurrence as result of human, agricultural and industrial activities. A pot study was carried out to evaluate physio-biochemical responses (chlorophyll content, soluble protein, proline content and activities of enzymatic antioxidants) of 10 bread wheat genotypes to inoculation of plant growth promoting rhizobacteria (combination of Azospirillum brasilense and Azotobacter chroococcum) under Pb stress (0 and 65 mg kg-1). Result revealed that lead stress averagely decreased grain yield of wheat cultivars by 41.4 %. Lead stress increased lipid peroxidation and induced a significant accumulation of proline in leaves. Protein content decreased from 8-25.4% in different cultivars in Pbcontaminated soils. Activities of antioxidant enzymes, such as, ascorbate peroxidase, superoxide dismutase and catalase were significantly increased in the presence of lead. An increase in total hydrogen peroxide (H2O2) content was noticed under lead stress in all cultivars, which was similar to production of malondialdehyde (MDA). However, promotion of growth was evident in most cultivars as a consequence of rhizobacterial inoculation, since plant growth promoting rhizobacteria could improve grain yield, proline content and membrane integrity, while significantly reduced the production of MDA and H2O2. Total chlorophyll content considerably declined with Pb stress. Between cultivars the best performance under lead stress was observed in Sardari, Shahriyar and Gaspard which had the highest yield and antioxidants activity. Obtained results showed that inoculation with Azotobacter and Azospirillium possibly through bioremediation strategy can stimulate plant growth under adverse environmental conditions, such as heavy metal contamination.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 605
Author(s):  
Chesly Kit Kobua ◽  
Ying-Tzy Jou ◽  
Yu-Min Wang

Chemical fertilizer (CF) is necessary for optimal growth and grain production in rice farming. However, the continuous application of synthetic substances has adverse effects on the natural environment. Amending synthetic fertilizer with plant-growth-promoting rhizobacteria (PGPR) is an alternate option to reduce CF usage. In this study, a field trial was undertaken in southern Taiwan. We aimed to investigate the effects of reducing CF, either partially or completely, with PGPR on the vegetative growth, biomass production, and grain yield of rice plants cultivated under alternate wetting and drying (AWD) cultivation. In addition, we aimed to determine an optimal reduction in CF dose when incorporated with PGPR for application in rice cultivation under AWD. The trial consisted of four treatments, namely, 0% CF + 100% PGPR (FP1), 25% CF + 75% PGPR (FP2) 50% CF + 50% PGPR (FP3), and 100% CF + 0% PGPR (CONT). A randomized complete blocked design (RCBD) with three replicates was used. A reduction in CF by 25–50% with the difference compensated by PGPR significantly (p ≤ 0.05) influenced the crops biomass production. This improved the percentage of filled grains (PFG), and the thousand-grain weight (1000-GW) of treated plants by 4–5%. These improvements in growth and yield components eventually increased the grain yield production by 14%. It is concluded that partial replacement of CF with PGPR could be a viable approach to reduce the use of CF in existing rice cultivation systems. Furthermore, the approach has potential as a sustainable technique for rice cultivation.


2021 ◽  
Author(s):  
Saroj Kumar Yadav ◽  
Kiran P. Raverkar

French bean (Phaseolus vulgaris L.) is used profusely by the common people as an alternative diet of protein. The sparse nodulation in French bean mainly may be due to lack of threshold level of specific rhizobial cells in soil at the time of sowing. The isolates streaked on YEMA with BTB changed to yellow color showing the production of acid which is the characteristic of Rhizobium. Utilization of different carbon sources is an efficient tool to characterize the isolates. Plant growth promoting rhizobacteria is the beneficial rhizobacteria inoculation of which increases growth and yield of French bean through different direct and indirect mechanisms. Inoculation of French beans with rhizobial and rhizobacterial isolates found to be improved growth, physiological, quality parameters and grain yield through symbiotic N2-fixation capacity and plant growth promoting abilities. Co-inoculation of rhizobial and rhizobacterial isolates enhanced the growth and grain yield of French bean. These isolates may be used as consortium to improve the growth of French bean, which may reduce the dependency of farmer on chemical fertilizer as well as risk of pollution. In this chapter characterization of Rhizobium and plant growth promoting rhizobacteria and their effect on plant growth has been reviewed.


Sign in / Sign up

Export Citation Format

Share Document