Vegetation mediated the impacts of postglacial climate change on fire regimes in the south-central Brooks Range, Alaska

2009 ◽  
Vol 79 (2) ◽  
pp. 201-219 ◽  
Author(s):  
Philip E. Higuera ◽  
Linda B. Brubaker ◽  
Patricia M. Anderson ◽  
Feng Sheng Hu ◽  
Thomas A. Brown
2012 ◽  
Vol 12 (5) ◽  
pp. 1521-1537 ◽  
Author(s):  
R. P. Daanen ◽  
G. Grosse ◽  
M. M. Darrow ◽  
T. D. Hamilton ◽  
B. M. Jones

Abstract. We present the results of a reconnaissance investigation of unusual debris mass-movement features on permafrost slopes that pose a potential infrastructure hazard in the south-central Brooks Range, Alaska. For the purpose of this paper, we describe these features as frozen debris-lobes. We focus on the characterisation of frozen debris-lobes as indicators of various movement processes using ground-based surveys, remote sensing, field and laboratory measurements, and time-lapse observations of frozen debris-lobe systems along the Dalton Highway. Currently, some frozen debris-lobes exceed 100 m in width, 20 m in height and 1000 m in length. Our results indicate that frozen debris-lobes have responded to climate change by becoming increasingly active during the last decades, resulting in rapid downslope movement. Movement indicators observed in the field include toppling trees, slumps and scarps, detachment slides, striation marks on frozen sediment slabs, recently buried trees and other vegetation, mudflows, and large cracks in the lobe surface. The type and diversity of observed indicators suggest that the lobes likely consist of a frozen debris core, are subject to creep, and seasonally unfrozen surface sediment is transported in warm seasons by creep, slumping, viscous flow, blockfall and leaching of fines, and in cold seasons by creep and sliding of frozen sediment slabs. Ground-based measurements on one frozen debris-lobe over three years (2008–2010) revealed average movement rates of approximately 1 cm day−1, which is substantially larger than rates measured in historic aerial photography from the 1950s to 1980s. We discuss how climate change may further influence frozen debris-lobe dynamics, potentially accelerating their movement. We highlight the potential direct hazard that one of the studied frozen debris-lobes may pose in the coming years and decades to the nearby Trans Alaska Pipeline System and the Dalton Highway, the main artery for transportation between Interior Alaska and the North Slope.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

<p>This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25° x 0.25° for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen’s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22°C to 32°C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20°C to 33°C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.</p>


2021 ◽  
Vol 2 ◽  
Author(s):  
Estelle Levetin

Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.


2015 ◽  
Vol 11 (2) ◽  
pp. 1371-1405
Author(s):  
A. E. Chew

Abstract. Scientists are increasingly turning to deep-time fossil records to decipher the long-term consequences of climate change in the race to preserve modern biotas from anthropogenically driven global warming. "Hyperthermals" are past intervals of geologically rapid global warming that provide the opportunity to study the effects of climate change on existing faunas over thousands of years. A series hyperthermals is known from the early Eocene (∼56–54 million years ago), including the Paleocene-Eocene Thermal Maximum (PETM) and two subsequent hyperthermals, Eocene Thermal Maximum 2 (ETM2) and H2. The later hyperthermals occurred following the onset of warming at the Early Eocene Climatic Optimum (EECO), the hottest sustained period of the Cenozoic. The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 and H2 are unknown. Their geochemical signatures have been located in the northern part of the Bighorn Basin, WY, USA, and their levels can be extrapolated to an extraordinarily dense, well-studied terrestrial mammal fossil record in the south-central part of the basin. High-resolution, multi-parameter paleoecological analysis reveals significant peaks in species diversity and turnover and changes in abundance and relative body size at the levels of ETM2 and H2 in the south-central Bighorn Basin record. In contrast with the PETM, faunal change at the later hyperthermals is less extreme, does not include immigration and involves a proliferation of body sizes, although abundance shifts tend to favor smaller congeners. Faunal response at ETM2 and H2 is distinctive in its high proportion of species losses potentially related to heightened species vulnerability in response to the changes already underway at the beginning of the EECO. Faunal response at ETM2 and H2 is also distinctive in high proportions of beta richness, suggestive of increased geographic dispersal related to transient increases in habitat (floral) complexity and/or precipitation or seasonality of precipitation. These results suggest that rapid ecological changes, increased heterogeneity in species incidence, and heightened species vulnerability and loss may be expected across most of North America in the near future in response to anthropogenically-driven climate change.


Sign in / Sign up

Export Citation Format

Share Document