scholarly journals Priority effects and species sorting in a long paleoecological record of repeated community assembly through time

Ecology ◽  
2011 ◽  
Vol 92 (12) ◽  
pp. 2267-2275 ◽  
Author(s):  
Joachim Mergeay ◽  
Luc De Meester ◽  
Hilde Eggermont ◽  
Dirk Verschuren
2022 ◽  
Author(s):  
Raven L Bier ◽  
Máté Vass ◽  
Anna J Székely ◽  
Silke Langenheder

Understanding processes that determine community membership and abundance is important for many fields from theoretical community ecology to conservation. However, spatial community studies are often conducted only at a single timepoint despite the known influence of temporal variability on community assembly processes. Here we used a spatiotemporal study to determine how environmental fluctuation differences induced by mesocosm volumes (larger volumes were more stable) influence assembly processes of aquatic bacterial metacommunities along a press disturbance gradient. By combining path analysis and network approaches, we found mesocosm size categories had distinct relative influences of assembly process and environmental factors that determined spatiotemporal bacterial community composition, including dispersal and species sorting by conductivity. These processes depended on, but were not affected proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily developed through the interplay of species sorting that became more important over time and transient priority effects as evidenced by more time-delayed associations. High fluctuation, small mesocosms had regular disruptions to species sorting and greater importance of ecological drift and dispersal limitation indicated by lower richness and higher taxa replacement. Together, these results emphasize that environmental fluctuations influence ecosystems over time and its impacts are modified by biotic properties intrinsic to ecosystem size.


Author(s):  
Brian J. Wilsey

Conservation programs alter herbivore stocking rates and find and protect the remaining areas that have not been plowed or converted to crops. Restoration is an ‘Acid Test’ for ecology. If we fully understand how grassland systems function and assemble after disturbance, then it should be easy to restore them after they have been degraded or destroyed. Alternatively, the idea that restorations will not be equivalent to remnants has been termed the ‘Humpty Dumpty’ hypothesis—once lost, it cannot be put back together again. Community assembly may follow rules, and if these rules are uncovered, then we may be able to accurately predict final species composition after assembly. Priority effects are sometimes found depending on species arrival orders, and they can result in alternate states. Woody plant encroachment is the increase in density and biomass of woody plants, and it is strongly affecting grassland C and water cycles.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Sung Kim ◽  
Seok Hyun Ahn ◽  
In Jae Jeong ◽  
Tae Kwon Lee

AbstractThe metacommunity approach provides insights into how the biological communities are assembled along the environmental variations. The current study presents the importance of water quality on the metacommunity structure of algal communities in six river-connected lakes using long-term (8 years) monitoring datasets. Elements of metacommunity structure were analyzed to evaluate whether water quality structured the metacommunity across biogeographic regions in the riverine ecosystem. The algal community in all lakes was found to exhibit Clementsian or quasi-Clementsian structure properties such as significant turnover, grouped and species sorting indicating that the communities responded to the environmental gradient. Reciprocal averaging clearly classified the lakes into three clusters according to the geographical region in river flow (upstream, midstream, and downstream). The dispersal patterns of algal genera, including Aulacoseira, Cyclotella, Stephanodiscus, and Chlamydomonas across the regions also supported the spatial-based classification results. Although conductivity, chemical oxygen demand, and biological oxygen demand were found to be important variables (loading > |0.5|) of the entire algal community assembly, water temperature was a critical factor in water quality associated with community assembly in each geographical area. These results support the notion that the structure of algal communities is strongly associated with water quality, but the relative importance of variables in structuring algal communities differed by geological regions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Kalenitchenko ◽  
Erwan Peru ◽  
Pierre E. Galand

AbstractPredicting ecosystem functioning requires an understanding of the mechanisms that drive microbial community assembly. Many studies have explored microbial diversity extensively and environmental factors are thought to be the principal drivers of community composition. Community assembly is, however, also influenced by past conditions that might affect present-day assemblages. Historical events, called legacy effects or historical contingencies, remain poorly studied in the sea and their impact on the functioning of the communities is not known. We tested the influence, if any, of historical contingencies on contemporary community assembly and functions in a marine ecosystem. To do so, we verified if different inoculum communities colonizing the same substrate led to communities with different compositions. We inoculated wood with sea water microbes from different marine environments that differ in ecological and evolutionary history. Using 16S rRNA and metagenomic sequencing, it was demonstrated that historical contingencies change the composition and potential metabolisms of contemporary communities. The effect of historical events was transient, dominated by environmental selection as, over time, species sorting was a more important driver of community assembly. Our study shows not only that historical contingencies affect marine ecosystems but takes the analysis a step further by characterizing this effect as strong but transient.


Oecologia ◽  
2016 ◽  
Vol 182 (3) ◽  
pp. 865-875 ◽  
Author(s):  
Duarte S. Viana ◽  
Bertha Cid ◽  
Jordi Figuerola ◽  
Luis Santamaría

2012 ◽  
Vol 8 (4) ◽  
pp. 558-561 ◽  
Author(s):  
William G. Lee ◽  
Andrew J. Tanentzap ◽  
Peter B. Heenan

The hypothesis that early plant radiations on islands dampen diversification and reduce habitat occupancy of later radiations via niche pre-emption has never, to our knowledge, been tested. We investigated clade-level dynamics in plant radiations in the alpine zone, New Zealand. Our aim was to determine whether radiations from older colonizations influenced diversification and community dominance of species from later colonizations within a common bioclimatic zone over the past ca 10 Myr. We used stem ages derived from the phylogenies of 17 genera represented in alpine plant communities in the Murchison Mountains, Fiordland, and assessed their presence and cover in 262 (5 × 5 m) vegetation plots. Our results show clear age-related community assembly effects, whereby congenerics from older colonizing genera co-occur more frequently and with greater cover per unit area than those from younger colonizing genera. However, we find no evidence of increased species richness with age of colonization in the alpine zone. The data support priority effects via niche pre-emption among plant radiations influencing community assembly.


2012 ◽  
Vol 82 (1) ◽  
pp. 266-274 ◽  
Author(s):  
Korhan Özkan ◽  
Jens-Christian Svenning ◽  
Erik Jeppesen

2010 ◽  
Vol 29 (4) ◽  
pp. 1267-1278 ◽  
Author(s):  
Bram Vanschoenwinkel ◽  
Aline Waterkeyn ◽  
Merlijn Jocqué ◽  
Liesbet Boven ◽  
Maitland Seaman ◽  
...  

2019 ◽  
Author(s):  
Ash T. Zemenick ◽  
Rachel L. Vannette ◽  
Jay A. Rosenheim

AbstractDue to the difficulty of tracking microbial dispersal, it rarely possible to disentangle the relative importance of dispersal and species sorting for microbial community assembly. Here, we leverage a detailed multilevel network to examine drivers of bacterial community assembly within flowers. We show that plant species with similar visitor communities tend to have similar bacterial communities, and visitor identity to be more important than dispersal rate in structuring floral bacterial communities. However, plants occupied divergent positions in plant-insect and plant-microbe networks, suggesting an important role for species sorting. Taken together, our analyses suggest dispersal is important in determining similarity in microbial communities across plant species, but not as important in determining structural features of the floral bacterial network. A multilevel network approach thus allows us to address features of community assembly that cannot be considered when viewing networks as separate entities.


Sign in / Sign up

Export Citation Format

Share Document