scholarly journals Mycorrhizal response trades off with plant growth rate and increases with plant successional status

Ecology ◽  
2015 ◽  
Vol 96 (7) ◽  
pp. 1768-1774 ◽  
Author(s):  
Liz Koziol ◽  
James D. Bever
2021 ◽  
Vol 13 (6) ◽  
pp. 3569
Author(s):  
Hua Cheng ◽  
Baocheng Jin ◽  
Kai Luo ◽  
Jiuying Pei ◽  
Xueli Zhang ◽  
...  

Quantitatively estimating the grazing intensity (GI) effects on vegetation in semiarid hilly grassland of the Loess Plateau can help to develop safe utilization levels for natural grasslands, which is a necessity of maintaining livestock production and sustainable development of grasslands. Normalized difference vegetation index (NDVI), field vegetation data, and 181 days (one goat per day) of GPS tracking were combined to quantify the spatial pattern of GI, and its effects on the vegetation community structure. The spatial distribution of GI was uneven, with a mean value of 0.50 goats/ha, and 95% of the study area had less than 1.30 goats/ha. The areas with utilization rates of rangeland (July) lower than 45% and 20% made up about 95% and 60% of the study area, respectively. Grazing significantly reduced monthly aboveground biomass, but the grazing effects on plant growth rate were complex across the different plant growth stages. Grazing impaired plant growth in general, but the intermediate GI appeared to facilitate plant growth rate at the end of the growing seasons. Grazing had minimal relationship with vegetation community structure characteristics, though Importance Value of forbs increased with increasing GI. Flexibility in the number of goats and conservatively defining utilization rate, according to the inter-annual variation of utilization biomass, would be beneficial to achieve ecologically healthy and economically sustainable GI.


2007 ◽  
Vol 104 (11) ◽  
pp. 4759-4764 ◽  
Author(s):  
R. C. Meyer ◽  
M. Steinfath ◽  
J. Lisec ◽  
M. Becher ◽  
H. Witucka-Wall ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 350
Author(s):  
Francisco Albornoz ◽  
Adriana Nario ◽  
Macarena Saavedra ◽  
Ximena Videla

The use of grafting techniques for horticultural crops increases plant tolerance to various abiotic and biotic stresses. Tomato production under greenhouse conditions relies on plants grafted onto vigorous rootstocks because they sustain crops for longer periods. Growers under Mediterranean conditions usually grow crops in passive greenhouses during the summer and winter season, to provide fresh products throughout the year. No information is available with regard to the effect of the environment on nitrogen-use efficiency (NUE) in tomato plants grafted onto rootstocks with different vigor. In the present study, NUE, along with its components—uptake (NUpE) and utilization (NUtE) efficiencies—were evaluated in tomato plants grafted onto two interspecific rootstocks, conferring medium (“King Kong”) or high (“Kaiser”) vigor to the plants. The evaluations were carried out during the vegetative and reproductive stage in plants subjected to different environmental conditions resulting in different plant growth rates. The grafting treatments did not affect NUE, NUpE or NUtE in young plants, but at the reproductive stage, differences were found during the summer season (high N demand) where the vigorous rootstock increased NUpE from 55%, in non-grafted plants, to 94%, with the consequent differences in NUE. During the winter crop, no differences in NUE were found between the vigorous rootstock and non-grafted plants, but the less vigorous (cold-tolerant) rootstock enhanced NUpE. Significant positive relationships were found between plant growth rate and both NUE and NUpE, while NUtE decreased with increasing growth rate.


1969 ◽  
Vol 5 (3) ◽  
pp. 195-207 ◽  
Author(s):  
A. H. El Nadi

SummaryExperiments were made in glasshouses, growth cabinets and growth rooms to study the differential responses of the broad bean to water stress during the vegetative and flowering phases of growth. Plants in the flowering phase proved to be more sensitive to drought than in the vegetative period, and there were different responses (Relative Growth Rate) to temperature at different stages of plant growth. Day length and temperature influenced the position of the earliest flower initials on the stem, and intensity of flower shedding was aggravated by high temperature.


Author(s):  
Nicolás Ciancio ◽  
Daniel J. Miralles ◽  
Gustavo G. Striker ◽  
Leonor G. Abeledo

2010 ◽  
Vol 20 (16) ◽  
pp. 1493-1497 ◽  
Author(s):  
Kate Sidaway-Lee ◽  
Eve-Marie Josse ◽  
Alanna Brown ◽  
Yinbo Gan ◽  
Karen J. Halliday ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document