scholarly journals Studi Kinetika Degradasi Warna Biodegradable Film - Antosianin Untuk Indikator Proses Termal

2018 ◽  
Vol 6 (2) ◽  
pp. 137-144
Author(s):  
Rozi Satria Utama ◽  
Nugraha Edhi Suyatma ◽  
Nancy Dewi Yulliana

AbstractAnthocyanins from different sources have been reported for its potential as thermal process indicator. This research aimed in particular to study the color degradation kinetics of anthoyanin from Roselle and in general to provide alternative natural indicator for thermal process. Roselle’s anthocyanin extract was incorporated into 3 biodegradable films (i.e agar, pectin, PVA). Thermal degradation kinetics of anthocyanin’s color (ΔE and Chroma) in biodegradable film was studied at selected temperatures (80oC, 90oC, and 100oC). The color change was observed at minute 0, 30, 60 and 120 by computer vision method. The results showed that anthocyanin incorporated into PVA film had the highest value of activation energy (Ea), while anthocyanin incorporated into pectin film had the smallest value of Ea. Lower value of Ea indicating that the anthocyanin chroma is easily degraded at low temperature. Higher value of Ea indicating that it needshigher energy or higher temperature to degrade the color. The results of this study showed that anthocyanin in PVA film can be selected as indicator for high temperature thermal process (e.g. sterilization), while anthocyanin in pectin film can be used in lower temperature thermal process (e.g. pasteurization). AbstrakPotensi antosianin dari berbagai sumber sebagai indikator proses termal alami telah banyak dilaporkan. Penelitian ini bertujuan mempelajari kinetika degradasi warna film-antosianin serta menentukan kombinasibiodegradable film-antosianin terbaik sebagai alternatif indikator proses termal. Pengamatan kinetik ini dilakukan pada suhu 80oC, 90oC, dan 100oC dan parameter degradasi warna yang diukur adalah ΔE danChroma. Hasil penelitian menunjukkan bahwa antosianin pada film PVA mempunyai nilai energi aktivasi (Ea) paling besar, sedangkan antosianin pada film pektin mempunyai nilai Ea paling kecil. Nilai Ea degradasiwarna antosianin yang kecil pada film pektin menunjukkan bahwa degradasi warna sudah dapat berjalan pada suhu yang rendah. Sedangkan nilai Ea degradasi warna antosianin yang lebih besar pada film PVA menunjukkan bahwa antosianin pada film tersebut merupakan yang paling sensitif terhadap perubahan suhu dan paling signifikan perubahan warnanya. Namun perubahan warna yang signifikan pada antosianinpada film PVA membutuhkan suhu yang lebih tinggi sehingga lebih tepat untuk digunakan sebagai indikator pada proses termal dengan suhu yang tinggi (misalnya sterilisasi), sedangkan antosianin pada film pektin dapat digunakan pada proses termal dengan suhu yang lebih rendah (misalnya pasteurisasi).

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


2006 ◽  
Vol 76 (4) ◽  
pp. 538-546 ◽  
Author(s):  
Debjani Dutta ◽  
Abhishek Dutta ◽  
Utpal Raychaudhuri ◽  
Runu Chakraborty

Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1246 ◽  
Author(s):  
Samson M. Mohomane ◽  
Tshwafo E. Motaung ◽  
Neerish Revaprasadu

2007 ◽  
Vol 92 (6) ◽  
pp. 962-967 ◽  
Author(s):  
Xiangli Meng ◽  
Yudong Huang ◽  
Hong Yu ◽  
Zushun Lv

2012 ◽  
Vol 610-613 ◽  
pp. 296-299
Author(s):  
Xin Jie Li ◽  
Dan Nan Jiang ◽  
Yue Jun Zhang

In order to learn the ClO2 decay behaviour in tap water, the kinetics of ClO2 decay in pure water was studied. Under the conditions of tap water treatment and keeping away from light, the effects of temperature and pH on ClO2 degradation were investigated. The results show that the ClO2 decay reaction in pure water is the first-order with respect to ClO2, the decay rate constants increase with increase in temperature or pH. At pH=6.87, the rate constants are 0.012h-1(15°C), 0.017h-1(25°C), 0.023h-1(35°C), and 0.029h-1(45°C), respectively. At 25°C, the rate constants are 0.0083h-1(pH=4.5), 0.0111h-1(pH=5.5), 0.0143h-1(pH=6.5), 0.0222h-1(pH=7.5), and 0.0351h-1(pH=8.5), respectively. The experimental data prove that ClO2 is more stable in acidic or lower temperature water than in neutral, alkalescent, or higher temperature water.


2002 ◽  
Vol 86 (4) ◽  
pp. 957-961 ◽  
Author(s):  
Priyadarsi De ◽  
Sujay Chattopadhyay ◽  
Giridhar Madras ◽  
D. N. Sathyanarayana

2018 ◽  
Author(s):  
Abdullah Al-Yami ◽  
Vikrant Wagle ◽  
Walmy Cuello Jimenez ◽  
Paul Jones

Sign in / Sign up

Export Citation Format

Share Document