scholarly journals Thermal Degradation Kinetics of Sugarcane Bagasse and Soft Wood Cellulose

Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1246 ◽  
Author(s):  
Samson M. Mohomane ◽  
Tshwafo E. Motaung ◽  
Neerish Revaprasadu
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


2002 ◽  
Vol 86 (4) ◽  
pp. 957-961 ◽  
Author(s):  
Priyadarsi De ◽  
Sujay Chattopadhyay ◽  
Giridhar Madras ◽  
D. N. Sathyanarayana

2018 ◽  
Author(s):  
Abdullah Al-Yami ◽  
Vikrant Wagle ◽  
Walmy Cuello Jimenez ◽  
Paul Jones

2019 ◽  
Vol 39 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Hongyan Li ◽  
Yongqiang Fu ◽  
Hongli Liu ◽  
Cong Sun ◽  
Ruyi Li ◽  
...  

AbstractThe thermo-oxidative and thermal degradation kinetic parameters of polymethyl methacrylate-methacryloxyethyltrimethyl ammonium chloride/silica aerogel composites (PMMA-MTC/SA) were investigated in this paper and were compared with the thermal stability and thermal conductivity of different types of composites. As a composite with electrostatic interaction, the thermo-oxidative and thermal degradation activation energies (E) of PMMA-MTC/SA were 173.97 and 188.05 kJ/mol, respectively. The results indicated that the electrostatic interaction could indeed enhance the thermal stability of silica/polymethyl methacrylate composites on the premise of good mechanical properties and heat insulation performance. It is of great significance for the further development of silica-based thermal insulation composites.


2017 ◽  
Vol 30 (7) ◽  
pp. 787-793 ◽  
Author(s):  
Xu Su ◽  
Yong Xu ◽  
Linshuang Li ◽  
Chaoran Song

Two kinds of thermoplastic polyimides (PIs) were synthesized via a two-step method with 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 4,4′-oxydianiline (ODA) diamine, and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), and their thermal degradation kinetics was studied by thermogravimetric analysis at different heating rates under nitrogen. Derivative thermogravimetric analysis curves indicated a simple, single-stage degradation process in PI BTDA-BAPP and a two-stage degradation process in PI BTDA-ODA-BAPP. The activation energies ( Eas) of the thermal degradation reaction were determined by the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods without a knowledge of the kinetic reaction mechanism. By comparing the values of Ea and weight loss temperatures, it was demonstrated that the thermal stability of PI BTDA-ODA-BAPP was superior to that of PI BTDA-BAPP.


Sign in / Sign up

Export Citation Format

Share Document