Drying characteristics and thermal degradation kinetics of hardness, anthocyanin content and colour in purple- and red-fleshed potato (Solanum tuberosumL.) during hot air drying

2015 ◽  
Vol 50 (5) ◽  
pp. 1255-1267 ◽  
Author(s):  
Ji Hoon Moon ◽  
Cheol-ho Pan ◽  
Won Byong Yoon
Author(s):  
Dan Huang ◽  
Yuchao Tao ◽  
Wei Li ◽  
S. A. Sherif ◽  
Xiaohong Tang

Abstract The heat transfer characteristics and kinetics of Camellia oleifera seeds under hot-air drying were investigated at different temperatures (40, 60, and 80 °C) and loading densities (0.92, 1.22, and 1.52 g/cm2) with a constant air velocity of 1 m/s. Twelve common drying kinetic models were selected to fit the experimental data. The most suitable model was chosen to describe the hot-air drying process of C. oleifera seeds and help in its optimization. The results showed that the drying temperature has a significant influence on the hot-air drying characteristics of C. oleifera seeds. As the drying air temperature increases, the drying time decreases. The effect of the loading density on the drying characteristics of C. oleifera seeds is much smaller than that of temperature. With the increase in the loading density, the drying time slightly increases. The hot-air drying curve of C. oleifera seeds consists of a very short acceleration rate period at the beginning and a long falling rate period, indicating that the drying of C. oleifera seeds is mainly controlled by the diffusion of moisture inside the material. An effective moisture diffusion coefficient of C. oleifera seeds was estimated to range from 0.81256 × 10−9 to 3.28496 × 10−9 m2/s within the temperature range studied. The average activation energy was 28.27979 kJ/mol. The logarithmic model was found to be the best model to describe the kinetics of hot-air drying of C. oleifera seeds.


LWT ◽  
2013 ◽  
Vol 50 (1) ◽  
pp. 172-176 ◽  
Author(s):  
Engin Demiray ◽  
Yahya Tulek ◽  
Yusuf Yilmaz

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1597
Author(s):  
Iman Jafari ◽  
Mohamadreza Shakiba ◽  
Fatemeh Khosravi ◽  
Seeram Ramakrishna ◽  
Ehsan Abasi ◽  
...  

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE’s molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE’s thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa–Flynn–Wall (OFW), Kissinger, and Augis and Bennett’s. The "Model-Fitting Method” showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.


Materials ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1246 ◽  
Author(s):  
Samson M. Mohomane ◽  
Tshwafo E. Motaung ◽  
Neerish Revaprasadu

Sign in / Sign up

Export Citation Format

Share Document