scholarly journals Effect of moisture and sonication time on dielectric strength and heat transfer performance of transformer oil based Al2O3 nanofluid

Author(s):  
S. Ravi Babu ◽  
N.V.A Ravi Kumar ◽  
P. Ramesh Babu
Author(s):  
D. G. Walker ◽  
J. L. Davidson ◽  
P. G. Taylor ◽  
K. L. Soh ◽  
Bruce Rogers

The heat transfer characteristics of a transformer using both standard mineral oil and nanodiamond oil was investigated numerically and compared to experimental measurements. The results of the model agree well with the standard oil measurements and with theoretical convective flows from the literature. However, the simulations could not predict the magnitude of the temperature variation in the nanodiamond oil, although the appropriate trend was observed. Because properties of the nanodiamond transformer oil are not well known, good agreement is not expected. Nevertheless, nanodiamond in transformer oil shows enhanced heat transfer performance over standard transformer oil.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohd Seraj ◽  
Syed Mohd Yahya ◽  
Mohd Anas ◽  
Agung Sutrisno ◽  
Mohammad Asjad

PurposeIn the present study, the thermal performance of engine radiator using conventional coolant and nanofluid is determined experimentally for the different flow rates. Further, the study implemented the Integrated Taguchi-GRA-PCA for optimising the heat transfer performance.Design/methodology/approachNanofluids were prepared by taking ethylene glycol and water (25:75 by volume) with volume fraction of 0.01, 0.03 and 0.05% of TiO2 nanopowder. Experimental Data were collected based on the design of experiments (DOE) L9 orthogonal array using Taguchi method. Statistical analysis via Grey relation analysis (GRA) and principal component analysis (PCA) were done to determine the role of experimental parameters on heat transfer coefficient and rate of heat transfer. Impact of three control factors, vol. % of TiO2 concentration (φ), flow rate (LPH), and sonication time (min) on the performance characteristics on heat transfer coefficient and ratio of heat transfer rate is analysed to get the best combination of the parameters involved.FindingsAnalysis revealed the importance of parameters on heat transfer coefficient and can be sorted in terms of contributions from higher to lower degree. Finally, ANOVA test has been conducted to validate the effect of process parameters. The major controllable parameter is φ (concentration), contributing about 32.74%, then flow rate contributing 32.5% and finally sonication time showing small contribution of 18.57%.Originality/valueA grey relational analysis integrated with principal component analyses (PCA) are implemented to get the optimum heat transfer coefficient and ratio of heat transfer rate. The novelty of the work is to adopt and implement the Integrated Taguchi-GRA-PCA first time for the purpose of thermal performance analysis of engine nano-coolant for radiator.


Sign in / Sign up

Export Citation Format

Share Document