scholarly journals Effect of biodiesel on the development of split injection characteristics

2019 ◽  
Vol 177 (2) ◽  
pp. 103-107
Author(s):  
Stasys SLAVINSKAS ◽  
Gvidonas LABECKAS ◽  
Tomas MICKEVIČIUS

The paper presents the experimental test results of a common rail injection system operating with biodiesel and the diesel fuel. The three fuel split injection strategies were implemented to investigate the effects made by biodiesel and a fossil diesel fuel on the history of injector inlet pressure and the injection rate. In addition, the three intervals between split injections and the different injection pressures were used to obtain more information about the studied subjects. The obtained results showed that the peak mass injection rates of the main injection phase were slightly higher when using biodiesel than the respective values measured with the normal diesel fuel. Because the first injection phase activated the fuel pressure fluctuations along the high-pressure line and in front of the injector, the time-span between injections has an impact on the injector inlet pressure and thus the fuel injection rate during the second injection phase. Since the nozzle closes little later for biodiesel, the injector inlet pressure also occurred latter in the cycle.

Author(s):  
Стасис СЛАВИНСКАС ◽  
Томас МИЦКЯВИЧЮС ◽  
Арвидас ПАУЛЮКАС

This paper presents comparative experimental study’s results of diesel fuel and aviation fuel effect on operational properties of a high-pressure fuel pump of a common rail injection system. The two identical fuel injection systems mounted on a test bed of the fuel injection pumps were prepared for the experimental durability tests. The lubricity properties of diesel fuel and aviation fuel (Jet-A1) were studied using the High-Frequency Reciprocating Rig (HFRR) method. The values of wear scar diameter (WSD) obtained with Jet-A1 fuels were compared to the respective values measured with the reference diesel fuel. The microscopic photographs of the wear scar diameters obtained on above mentioned fuels are presented in the paper. The test results showed that long-term (about 300 hours) using aviation fuels produced a negative effect on the durability of the high-pressure fuel pump. Due to the wear of plunger-barrel units the decrease in the fuel delivery rate occurred of about 6.7 % operating with aviation fuel. The average friction coefficients of Jet-A1 fuels were higher than that of the normal diesel fuel. Keywords: diesel fuel, aviation Jet-A1 fuel, lubricity, plunger-barrel units, wear scar diameter


Author(s):  
Tongyang Gao ◽  
Kelvin Xie ◽  
Shui Yu ◽  
Xiaoye Han ◽  
Meiping Wang ◽  
...  

Increasing attention has being paid to alternative fuels that have the potential to reduce overall greenhouse gas emissions and fossil fuel dependence. The alcohol fuel n-butanol, as one of the advanced biofuels, can be potentially utilized as a partial or complete substitute for the diesel fuel in diesel engines. Experimental results from literature, as well as from the authors’ previous research, have shown promising trend of low soot and nitrogen oxides emissions from the combustion with n-butanol high pressure direct injection. However, due to the significant fuel property differences between n-butanol and diesel, the fuel delivery mechanism and combustion control algorithm need to be optimized for n-butanol use. A better understanding of the high pressure n-butanol injection characteristics, such as the injector opening/closing delays and spray droplet sizes, can provide the guidance for the control optimization and insights to the empirical observations of engine combustion and emissions. Meanwhile, the experimental data could be used for the model development of the n-butanol high pressure fuel injection events. In this work, injection rate measurement, high-speed video direct imaging, and phase Doppler anemometry (PDA) analysis of neat n-butanol and diesel fuel have been conducted with a light-duty high pressure common-rail fuel injection system. The injection rate measurement was performed with an offline injection rate analyzer at 20 bar backpressure to obtain the key parameters of the injector opening/closing delays, and the instantaneous pressure rise. The spray direct imaging was carried out in a pressurized chamber, and the PDA measurement was conducted on a test bench at ambient temperature and pressure. The injector dynamics and spray behavior with respect to the different fuels, variation of injection pressures, and variation of injection durations are discussed.


2019 ◽  
Vol 177 (2) ◽  
pp. 132-135
Author(s):  
Gvidonas LABECKAS ◽  
Stasys SLAVINSKAS ◽  
Tomas MICKEVIČIUS ◽  
Raimondas KREIVAITIS

This paper presents comparative experimental study’s results of ethanol-diesel fuel blends made effects on operational properties of a high-pressure fuel pump of a common rail injection system. The two identical fuel injection systems mounted on a test bed of the fuel injection pumps were prepared for the experimental durability tests. The lubricity properties of ethanol-diesel fuel blends E10 and E20 blends were studied using a four-ball tribometer. The test results showed that long-term (about 100 hours) using of ethanol-diesel blends produced a negative effect on the durability of the high-pressure fuel pump. Due to the wear of plunger-barrel units the decrease in the fuel delivery rate occurred of about 39% after the 100 h of continuous operation with ethanol-diesel fuel blends. The average friction coefficients of ethanol-diesel fuel blend E10 was lower than that of the normal diesel fuel. After the 100 hours of operation with ethanoldiesel fuel blend E10, the measured wear scar diameter was 10% higher than that of a fossil diesel fuel.


2015 ◽  
Vol 161 (2) ◽  
pp. 28-32
Author(s):  
Stasys Slavinskas ◽  
Tomas Mickevičius

This article presents the test results of injection processes of diesel-bioethanol fuel blends on a high pressure common rail injection system. The injection characteristics were analyzed using the injection rate measuring instrumentation. The injection rate, cycle injection quantity, injection delay and injection duration were analyzed across a range of injection pressure and injection energizing time. As the results show, the peak injection rate and delay of diesel-ethanol blends are lower compared to diesel fuel. The injection duration and discharge coefficients of diesel-ethanol blends were lower than those of diesel fuel. It was observed that fuel density and fuel viscosity have significant influence on the injection characteristics.


2019 ◽  
Vol 86 ◽  
pp. 276-286 ◽  
Author(s):  
Jinxin Wang ◽  
Zhongwei Wang ◽  
Viacheslav Stetsyuk ◽  
Xiuzhen Ma ◽  
Fengshou Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document