scholarly journals Experimental Research on the Injection Rate of DME and Diesel Fuel in Common Rail Injection System by Using Bosch and Zeuch Methods

Energies ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 273 ◽  
Author(s):  
Seemoon Yang ◽  
Changhee Lee
Author(s):  
Junxing Hou ◽  
Huayang Zhang ◽  
Xiaodong An ◽  
Guoqiang Tian ◽  
Xuewei Yan

The dynamic injection behaviors of pure biodiesel, high-proportioned biodiesel blends, and low-proportioned biodiesel blends in a common-rail injection system are researched. The effects of biodiesel ratio in the blended fuel and injection condition on the injection rate, cycle injection quantity, and fuel line pressure at the injector inlet are determined. The findings show that the injection duration is extended with the decrease in biodiesel ratio in the blended fuel, and fluctuation amplitude of injection rate in the stable injection stage increases. The first four pressure peaks for pure biodiesel decrease rapidly, while for blends, they decrease slowly, which results in an increasing difference of four pressure peaks between pure biodiesel and blends. With the decrease in biodiesel ratio, the mean volume injection quantity for three fuels gradually increases in the same injection condition. The coefficient of variation of the cycle injection quantity value for biodiesel and its blends with 30 cycles increases. The coefficient of variation value for biodiesel is between 0.4% and 0.7%. Compared with pure biodiesel, the mean volume injection quantity for BD70 increases by about 20–32%, and the coefficient of variation value is between 0.7% and 1.7% for high-proportioned biodiesel blends. The mean volume injection quantity increases by about 36–43% for low-proportioned biodiesel blends and the coefficient of variation value is between 1.1% and 2.1%.


2005 ◽  
Vol 127 (6) ◽  
pp. 1102-1110 ◽  
Author(s):  
J. Benajes ◽  
R. Payri ◽  
S. Molina ◽  
V. Soare

The quality of the mixing process of fuel and air in a direct injection diesel engine relies heavily on the way the spray develops when injected into the combustion chamber. Among other factors, the spray development depends on the injection rate of the fuel delivered by the injector. The paper presents a study, at both a macroscopic and microscopic level, of a Diesel spray generated by a common-rail injection system featuring a piston pressure amplifier. By modifying the timing and the duration of the injector and amplifier piston actuation, it is possible to obtain high injection pressures up to 180MPa, and different shapes for the injection rate, which would not be achievable with a regular common rail injection system. The spray evolution produced by three different injection rate shapes (square, ramp, and boot) has been investigated in an injection test rig, by means of visualization and PDPA techniques, at different injection conditions. The main conclusions are the important effect on spray penetration of the initial injection rate evolution and the small influence of the maximum injection pressure attained at the end of the injection event. Smaller or even negligible effects have been found on the spray cone angle and on the droplet Sauter mean diameter.


2015 ◽  
Vol 161 (2) ◽  
pp. 28-32
Author(s):  
Stasys Slavinskas ◽  
Tomas Mickevičius

This article presents the test results of injection processes of diesel-bioethanol fuel blends on a high pressure common rail injection system. The injection characteristics were analyzed using the injection rate measuring instrumentation. The injection rate, cycle injection quantity, injection delay and injection duration were analyzed across a range of injection pressure and injection energizing time. As the results show, the peak injection rate and delay of diesel-ethanol blends are lower compared to diesel fuel. The injection duration and discharge coefficients of diesel-ethanol blends were lower than those of diesel fuel. It was observed that fuel density and fuel viscosity have significant influence on the injection characteristics.


2012 ◽  
Vol 13 (5) ◽  
pp. 417-428 ◽  
Author(s):  
Octavio Armas ◽  
Carmen Mata ◽  
Simón Martínez-Martínez

This research paper presents a comparative experimental study for determining the functionality of a common-rail injection system used in light-duty diesel vehicles. Two Bosch fuel-injection systems were chosen to be tested using a low sulphur diesel fuel and an ethanol–diesel blend (7.7% v/v). Both systems were composed of a high-pressure injection pump Bosch (320 CDI), a common-rail and a Bosch piezoelectric fuel injector, and were tested during an accelerated durability test. In both cases, the injection systems were mounted in an injection test bench and run for 12 hours/day for 600 hours. An injection pressure of 1500 bar, a pump rotation speed of 2500 min−1 and an injection time of 1 ms were selected to simulate critical engine operating conditions. The selected test conditions were equivalent to driving a light-duty vehicle for over 120,000 km. This work employed several analysis equipment and techniques, including a surface tester for surface roughness characterization of the elements, an optical microscope for observation of the workpiece surface microstructure, a shadow comparator for geometrical characterization of elements, an analytical balance for weighing parts and, finally, a scanning electronic microscopy to determine nozzle dimensions. In both cases, the total fuel delivery was determined using an injection test bench. Results show that the use of the ethanol–diesel blend tested produced a similar effect on the durability of the injection pump parts as that produced when using diesel fuel. However, the effect on the injector nozzle was dissimilar.


Author(s):  
Michela Costa ◽  
Bianca M. Vaglieco ◽  
Felice E. Corcione ◽  
Hiroshi Omote

Present paper couples the use of a modified version of the KIVA-3V code including a model for detailed chemistry to an experimental investigation performed on an optically accessible diesel engine. The engine is equipped with a commercial four valves cylinder head and a Common Rail injection system. Digital images and UV-visible flame emission measurements are compared with the visualization of the numerical results. The diesel fuel surrogate is considered within the numerical code, namely a blend consisting of n-heptane and toluene, approximating the physical and ignition properties of the diesel oil. Products, soot and NOx formation is described by a chain of 283 reactions involving 69 species. The Partially Stirred Reactor (PaSR) assumption is adopted to maintain the computational cost within acceptable limits. The collections of digital images of the spray evolution, the mixture formation and the combustion processes are undertaken by running the engine at 1000 rpm. Commercial diesel fuel is injected by using a single injection.


Sign in / Sign up

Export Citation Format

Share Document