scholarly journals Variation in Activation Energy and Nanoscale Characteristic Length at the Glass Transition

2008 ◽  
Vol 3 (1) ◽  
pp. 31-43
Author(s):  
Ion Dranca

Differential scanning calorimetry has been used to study the α-relaxation (glass transition) in virgin polystyrene (PS), PS-clay nanocomposite, amorphous indomethacin (IM), maltitol (Mt) and glucose (Gl). Variation of the effective activation energy (E) throughout the glass transition has been determined by applying an advanced isoconversional method to DSC data on the glass transition. The relaxations have been characterized by determining the effective activation energies (E) and evaluating the sizes of cooperatively rearranging regions at the glass transition (Vg). The values of Vg have been determined from the heat capacity data. The α-relaxation demonstrates markedly larger values of E (~340 vs ~270 kJ mol-1) for the PS-clay system than for virgin PS. For IM in the glass transition region, the effective activation energy of relaxation decreases with increasing temperature from 320 to 160 kJ mol-1. In the Tg region E decreases (from~250 to ~150 kJ mol-1 in maltitol and from~220 to ~170 kJ mol-1 in glucose) with increasing T as typically found for the α-relaxation. It has been found that in the sub-Tg region E decreases with decreasing T reaching the values ~60 (glucose) and ~70 (maltitol) kJ -1 that are comparable to the literature values of the activation energies for the β-relaxation. Heat capacity measurements have allowed for the evaluation of the cooperatively rearranging region in terms of the linear size The PS-clay system has also been found to have a significantly larger value of Vg, 36.7 nm3 as compared to 20.9 nm3 for PS. Heat capacity measurements of IM have allowed for the evaluation of the cooperatively rearranging region (CRR) in term of linear size (3.4 nm) and the number of molecules (90). The size of CRR have been determined as 3.1 (maltitol) and 3.3 (glucose) nm.

2007 ◽  
Vol 21 (01) ◽  
pp. 127-132
Author(s):  
T. R. YANG ◽  
G. ILONCA ◽  
V. TOMA ◽  
P. BALINT ◽  
M. BODEA

The scaling behavior of the effective activation energy of high-quality epitaxial c-oriented Bi 2 Sr 2 Ca ( Cu 1-x Co x)2 O d thin films with 0≤x ≤0.025 has been studied as a function of temperature and magnetic field. For all samples, the effective activation energy scales as U(T, μoH)=Uo(1-T/T c )mHn with exponent m=1.25±0.03, n=-1/2 and the field scaling 1/μoH and -UμoH for thick films and ultra thin films, respectively. The results are discussed taking into account of the influence of the Co substitution with a model in which U(T, H) arises from plastic deformations of the viscous flux liquid above the vortex-glass transition temperature.


2001 ◽  
Vol 16 (8) ◽  
pp. 2399-2407 ◽  
Author(s):  
S. O. Kasap ◽  
D. Tonchev

We have studied the glass transition behavior of vitreous As2Se3 by carrying out temperature-modulated differential scanning calorimetry (TMDSC) and conventional differential scanning calorimetry (DSC) experiments to measure the glass transition temperature Tg. In TMDSC experiments we have examined the reversing heat flow (RHF), that is the complex heat capacity CP in the glass transition region as the glass is cooled from a temperature above the glass transition temperature (from a liquidlike state) and also as the glass is heated starting from room temperature (from a solidlike state). The RHF, or CP versus T, in TMDSC changes sigmoidally through the glass transition region without evincing an enthalpic peak which is one of its distinct advantages for studying the glass transformations. The Tg measurements by TMDSC were unaffected by the amplitude of the temperature modulation. We have determined apparent activation energies by using Tg-shift methods based on the Tg-shift with the frequency (ω) of temperature modulation in the TMDSC mode and Tg-shift with heating and cooling rates, r and q, respectively, in the DSC mode. It is shown that the apparent activation energies ∆h* obtained from ln ω versus 1/Tg and ln q versus 1/Tg plots are not the same, but nonetheless, they are approximately the same as the apparent activation energy ∆hn of the viscosity over the same temperature range where the empirical Vogel expression of Henderson and Ast, η = 12.9 exp[2940/(T - 335)], was used for the viscosity. The latter observation is in agreement with the assertion that the structural relaxation time Ʈ is proportional to the viscosity h. The apparent activation energy ∆hr obtained from the ln r versus 1/Tg plot during heating DSC scans is lower than ∆h* observed during cooling scans. The results are discussed in terms of a phenomenological Narayanaswamy type relaxation time. It was observed that Tg obtained from TMDSC cooling experiments did not depend on the underlying cooling rate for q ≤ 1 °C min-1; and for temperature amplitudes 0.5–5 °C. The transition due to the temperature modulation was well separated from the transition due to the underlying cooling rate. Further, the apparent activation energies obtained from ln ω versus 1/Tg during cooling and heating scans for q and r ≤ 1 °C min−1 are approximately the same as expected from Hutchison's calculations using a single relaxation time model of TMDSC experiments.


2004 ◽  
Vol 25 (19) ◽  
pp. 1708-1713 ◽  
Author(s):  
Sergey Vyazovkin ◽  
Nicolas Sbirrazzuoli ◽  
Ion Dranca

2001 ◽  
Vol 15 (22) ◽  
pp. 959-964 ◽  
Author(s):  
G. ILONCA ◽  
A. V. POP ◽  
G. STIUFIUC ◽  
C. LUNG ◽  
R. STIUFIUC

The scaling behavior of the effective activation energy U(T,H) of epitaxial c-axis oriented Bi 2 Sr 2 Ca ( Cu 1-x Fe x)2 O 8+d thin films with 0 ≤ x ≤ 0.02 has been studied as a function of temperature and magnetic field. It has been found that the activation energy scales as U(H,T) = U0(1 - t)mHn with exponent m = 1.15 ± 0.03 and n = -1/2. The field and temperature dependence of the activation energy, as well as its overall magnitude is consistent with a model in which U(T,H) arises from plastic deformations of viscous flux liquid above the vortex-glass transition temperature.


2019 ◽  
Vol 55 (3) ◽  
pp. 397-404 ◽  
Author(s):  
J.-T. Ju ◽  
J.-L. An ◽  
G.-H Ji

The effect of CaF2 substitution with TiO2 on the crystallization characteristics of low-fluoride slag was studied using differential scanning calorimetry (DSC) combined with XRD and SEM-EDS analysis. The effective activation energy for crystallization of the slag was evaluated. The results showed that the liquidus temperature of the slag increased unnoticeably with increasing TiO2 content. Increasing TiO2 addition from 4.3 wt% to 13.0 wt% decreased the undercooling of the slag and enhanced the crystallization ability of the slag. There is no change in the types and precipitation sequence of the crystalline phase in the slag with different TiO2 contents during continuous cooling. The crystalline phases were Ca12Al14O32F2, CaTiO3, MgO, and CaF2. The first and second crystallization phase were Ca12Al14O32F2 and CaTiO3, respectively. The dominant crystalline phase was faceted Ca12Al14O32F2 crystals. The morphology of CaTiO3 crystal changed from needle-like to blocky with increasing TiO2 content. The MgO crystal was with little blocky morphology, and the needlelike CaF2 distributed among CaTiO3 crystal. The precipitated amount of both MgO and CaF2 was very small. The effective activation energy for Ca12Al14O32F2 formation decreased with increasing TiO2 content in the slag, indicating that TiO2 enhanced the crystallization tendency of the slag.


Sign in / Sign up

Export Citation Format

Share Document