RP-HPLC-DAD method for simultaneous determination of desmedipham, phenmedipham and ethofumesate in a pesticide formulation

2012 ◽  
Vol 31 (1) ◽  
pp. 39 ◽  
Author(s):  
Lenče Velkoska-Markovska ◽  
Biljana Petanovska-Ilievska ◽  
Lila Vodeb

A fast, simple, precise and accurate reversed-phase high-performance liquid chromatography (RPHPLC)method with UV-DAD for simultaneous determination of desmedipham, phenmedipham and ethofumesate in the pesticide formulation “Inter OF” has been developed. The analysis was performed on a LiChrospher 60 RP-select B (25 cm × 0.4 cm, 5 μm, Merck) analytical column, with mobile phase of methanol/water (60/40, V/V), flow rate of 1 ml/min, UV-detection at 230 nm and constant column temperature at 25 ºC. The following parameters were determined for the developed method: retention factor, separation factor, limit of detection (LOD), limit of quantification (LOQ), precision of obtained results for peak area, linearity, recovery of analyte and active ingredients quantity in a pesticide formulation.

2009 ◽  
Vol 6 (1) ◽  
pp. 289-294 ◽  
Author(s):  
Uttam D. Pawar ◽  
Abhijit V. Naik ◽  
Aruna V. Sulebhavikar ◽  
Tirumal A. Datar ◽  
Kiran. V. Mangaonkar

A simple, fast and precise reversed phase high performance liquid chromatographic method is developed for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazone. Chromatographic separation of the three drugs was performed on an Intersil C18column (250 mm × 4.6 mm, 5µm) as stationary phase with a mobile phase comprising of 10 mM potassium dihydrogen phosphate (pH adjusted to 5.55 with ammonia): acetonitrile in the ratio 60:40 (v/v) at a flow rate of 1.0 mL/min and UV detection at 205 nm. The linearity of aceclofenac, paracetamol and chlorzoxazone were in the range of 5.00-15.00 µg/µL, 25.00-75.00 µg/µL and 25.00-75.00 µg/µL respectively. The limit of detection for aceclofenac, paracetamol and chlorzoxazone was found to be 18.0 ng/mL, 22.0 ng/mL and 9.0 ng/mL respectively whereas, the limit of quantification was found to be 55 ng/mL, 65 ng/mL and 27.0 ng/mL respectively. The recovery was calculated by standard addition method. The average recovery was found to be 99.04%, 99.57% and 101.63% for aceclofenac, paracetamol and chlorzoxazone respectively. The proposed method was found to be accurate, precise and rapid for the simultaneous determination of aceclofenac, paracetamol and chlorzoxazone


Author(s):  
Jasmin Shah ◽  
M. Rasul Jan ◽  
Sultan Shah ◽  
M. Naeem Khan

A reversed phase high performance liquid chromatographic method has been developed for the simultaneous determination of cefaclor and ceftriaxone cephalosporin antibiotic. The developed method has been validated and applied to mixtures of the commercial formulation and spiked human plasma. A mediterranea C<sub>18</sub> column (4.6 × 250 mm) was used with isocratic solvent delivery system and UV-visible detector. Different experimental parameters like solvent composition (acetonitrile: methanol: triethyl amine buffer 1:1:2 (v/v), flow rate of mobile phase (0.6 mLmin<sup>-1</sup>), pH of the buffer (7), and wavelength (260 nm) were optimized for effective separation and esolution of the analyte peaks. The separation was achieved in 6 min with retention times of 4.94 ± 0.056 min and 3.39 ± 0.022 min for cefaclor and ceftriaxone respectively. The linear range for both the studied drugs was found to be 0.5-250 μgmL<sup>-1</sup> with r<sup>2</sup> of 0.9987 (cefaclor) and 0.9997 (ceftriaxone). The limit of detection (3.3 σ/S) was found to be 2.34 × 10<sup>-2</sup> μgmL−1 and 1.70 × 10−2 μgmL<sup>-1</sup>, respectively, for cefaclor and ceftriaxone. Similarly limit of quantification (10σ/S) was 7.10 × 10−2 μgmL<sup>-1</sup> for cefaclor and 5.15 × 10−2 μgmL<sup>-1</sup> for ceftriaxone. The chromatographic procedure was applied to commercial formulations and spiked human plasma and the results were compared with literature HPLC method.


Author(s):  
Murat Soyseven ◽  
Rüstem Keçili ◽  
Hassan Y Aboul-Enein ◽  
Göksel Arli

Abstract A novel analytical method, based on high-performance liquid chromatography with a UV (HPLC-UV) detection system for the sensitive detection of a genotoxic impurity (GTI) 5-amino-2-chloropyridine (5A2Cl) in a model active pharmaceutical ingredient (API) tenoxicam (TNX), has been developed and validated. The HPLC-UV method was used for the determination of GTI 5A2Cl in API TNX. The compounds were separated using a mobile phase composed of water (pH 3 adjusted with orthophosphoric acid): MeOH, (50:50: v/v) on a C18 column (150 × 4.6 mm i.d., 2.7 μm) at a flow rate of 0.7 mL min−1. Detection was carried out in the 254 nm wavelength. Column temperature was maintained at 40°C during the analyses and 10 μL volume was injected into the HPLC-UV system. The method was validated in the range of 1–40 μg mL−1. The obtained calibration curves for the GTI compound was found linear with equation, y = 40766x − 1125,6 (R2 = 0.999). The developed analytical method toward the target compounds was accurate, and the achieved limit of detection and limit of quantification values for the target compound 5A2Cl were 0.015 and 0.048 μg mL−1, respectively. The recovery values were calculated and found to be between 98.80 and 100.03%. The developed RP-HPLC-UV analytical method in this research is accurate, precise, rapid, simple and appropriate for the sensitive analysis of target GTI 5A2Cl in model API TNX.


2017 ◽  
Vol 20 (2) ◽  
pp. 241-249 ◽  
Author(s):  
A. Jasiecka-Mikołajczyk ◽  
J.J. Jaroszewski

Abstract Tigecycline (TIG), a novel glycylcycline antibiotic, plays an important role in the management of complicated skin and intra-abdominal infections. The available data lack any description of a method for determination of TIG in avian plasma. In our study, a selective, accurate and reversed-phase high performance liquid chromatography-tandem mass spectrometry method was developed for the determination of TIG in turkey plasma. Sample preparation was based on protein precipitation and liquid-liquid extraction using 1,2-dichloroethane. Chromatographic separation of TIG and minocycline (internal standard, IS) was achieved on an Atlantis T3 column (150 mm × 3.0 mm, 3.0 μm) using gradient elution. The selected reaction monitoring transitions were performed at 293.60 m/z → 257.10 m/z for TIG and 458.00 m/z → 441.20 m/z for IS. The developed method was validated in terms of specificity, selectivity, linearity, lowest limit of quantification, limit of detection, precision, accuracy, matrix effect, carry-over effect, extraction recovery and stability. All parameters of the method submitted to validation met the acceptance criteria. The assay was linear over the concentration range of 0.01-100 μg/ml. This validated method was successfully applied to a TIG pharmacokinetic study in turkey after intravenous and oral administration at a dose of 10 mg/kg at various time-points.


2019 ◽  
Vol 16 (1) ◽  
pp. 100-109
Author(s):  
Ibrahim Aljuffali ◽  
Fahad Almarri ◽  
A. F. M. Motiur Rahman ◽  
Fars Kaed Alanazi ◽  
Musaed Alkholief ◽  
...  

Background: The purpose of the current study was to develop a selective, precise, fast economical and advanced reverse phase ultra-high-performance liquid chromatography (UHPLC UV) method and validate it for the simultaneous estimation of cholecalciferol and its analogue 25- hydroxycholecalciferol in lipid-based self-nano emulsifying formulation (SNEDDS). Methods: The chromatographic separation was simply performed on a Dionex® UHPLC systems (Ultimate 3000, Thermo scientific) by using HSS C18 (2.1x50 mm, 1.8 µm) analytical column. The elution was carried out isocratically with the mobile phase consisting of acetonitrile and methanol in the ratio of 50:50 %v/v with a flow rate of 0.4 ml/min, followed by the UV detection at 265 nm. The injection volume was 1µl and the column temperature was maintained at 45°C. FDA regulatory guidelines were used to develop and validate the method. Results: The current developed UHPLC-UV method was found to be rapid (run time 2 min), and selective with the high resolution of cholecalciferol and 25-hydroxycholecalciferol (RT=0.530 min & 1.360 min) from different lipid matrices. The method was highly sensitive (Limit of Detection and Lower Limit of Quantification were 0.13 ppm & 0.51ppm, and 0.15 ppm & 0.54 ppm, respectively). The linearity, accuracy and precision were determined as suitable over the concentration range of 0.5-50.0 ppm for both the analytes. Conclusion: The proposed UHPLC-UV method can be used for the determination of cholecalciferol and 25-hydroxycholecalciferol in SNEDDS and marketed Vi-De 3® as pure forms (intact) with no interference of excipients or drug-related substances.


2008 ◽  
Vol 3 (5) ◽  
pp. 1934578X0800300 ◽  
Author(s):  
Hui-Jun Li ◽  
Zheng-Ming Qian ◽  
Ping Li ◽  
Mei-Ting Ren ◽  
Jun Chen ◽  
...  

A new high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) method has been developed for the simultaneous determination of nine major compounds, namely chlorogenic acid (1), caffeic acid (2), sweroside (3), loganin (4), secoxyloganin (5), 3,5-di- O-caffeoyl quinic acid (6), luteolin-7- O-glucoside (7), rutin (8) and 3,4-di- O-caffeoyl quinic acid (9), in Caulis Lonicerae Japonicae (CLJ), a commonly used traditional Chinese medicinal herb. The separation was achieved on a C-18 column (250 × 4.6 mm, 5.0 μm) with a column temperature of 30°C and a flow-rate of 0.8 mL/min. The mobile phase was composed of (A) aqueous formic acid (0.1%, v/v) and (B) methanol, using a gradient elution of 30% B for 0-13 min, 30–40% B for 13–17 min, and 40–49% B for 17–30 min. The limit of detection ( S/ N = 3) ranged from 0.8 to 5.1 ng/mL and the limit of quantification ( S/ N = 10) varied from 3.4 to 16.9 ng/mL. All calibration curves showed good linear regression ( r2 > 0.9976) within the test ranges. The intra- and inter-day precisions, as determined from sample solutions, were below 2.2 and 4.3%, respectively. The recoveries for nine compounds were within 91.3 and 104.2%. This proposed method has been successfully applied to evaluation of commercial samples of CLJ from different markets in China, which provides a new basis of assessment of the quality of the herbal drug.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Myriam Ajemni ◽  
Issa-Bella Balde ◽  
Sofiane Kabiche ◽  
Sandra Carret ◽  
Jean-Eudes Fontan ◽  
...  

A stability-indicating assay by reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of pentobarbital sodium in oral formulations: a drug used for infant sedation in computed tomography (CT) or magnetic resonance imaging (MRI) scan. The chromatographic separation was achieved on a reversed-phase C18 column, using isocratic elution and a detector set at 214 nm. The optimized mobile phase consisted of a 0.01 M potassium buffer pH 3 and methanol (40 : 60, v/v). The flow rate was 1.0 mL/min and the run time of analysis was 5 min. The linearity of the method was demonstrated in the range of 5 to 250 μg/mL pentobarbital sodium solution (r2= 0.999). The limit of detection and limit of quantification were 2.10 and 3.97 μg/mL, respectively. The intraday and interday precisions were less than 2.1%. Accuracy of the method ranged from 99.2 to 101.3%. Stability studies indicate that the drug is stable to sunlight and in aqueous solution. Accelerated pentobarbital sodium breakdown by strong alkaline, acidic, or oxidative stress produced noninterfering peaks. This method allows accurate and reliable determination of pentobarbital sodium for drug stability assay in pharmaceutical studies.


2013 ◽  
Vol 10 (3) ◽  
pp. 1014-1022
Author(s):  
Baghdad Science Journal

A simple, precise, rapid, and accurate reversed – phase high performance liquid chromatographic method has been developed for the determination of guaifenesin in pure from pharmaceutical formulations.andindustrial effluent. Chromatography was carried out on supelco L7 reversed- phase column (25cm × 4.6mm), 5 microns, using a mixture of methanol –acetonitrile-water: (80: 10 :10 v/v/v) as a mobile phase at a flow rate of 1.0 ml.min-1. Detection was performed at 254nm at ambient temperature. The retention time for guaifenesin was found 2.4 minutes. The calibration curve was linear (r= 0.9998) over a concentration range from 0.08 to 0.8mg/ml. Limit of detection (LOD) and limit of quantification ( LOQ) were found 6µg/ml and 18µg/ml respectively. The method was validated for its linearity, precision and accuracy .The proposed method was successfully applied for the determination of guaifenesin in syrups and industrial effluent samples.


2009 ◽  
Vol 6 (1) ◽  
pp. 295-302 ◽  
Author(s):  
Uttam D. Pawar ◽  
Aruna V. Sulebhavikar ◽  
Abhijit V. Naik ◽  
Satish G. Pingale ◽  
Kiran V. Mangaonkar

An innovative high performance thin layer chromatography method was developed and validated for simultaneous determination of rofecoxib and tizanidine from tablet dosage form. Rosiglitazone maleate was used as an internal standard. The separation was achieved using HPTLC plates (Merck #5548) precoated with silica gel 60F254on aluminum sheets and a mobile phase comprising of toluene: ethyl acetate: methanol: triethyl amine in volume ratio of 6:3:0.5:0.1 (v/v/v/v), with chamber saturation of 15 min. The plate was developed up to 8 cm and air dried. The plate was then scanned and quantified at 235 nm. The linearity of rofecoxib and tizanidine were in the range of 3.75 µg/spot to 11.25 µg/spot and 0.30 µg/spot to 0.90 µg/spot respectively. The limit of detection for rofecoxib and tizanidine was found to be 45.00 ng/spot and 30.00 ng/spot respectively. The limit of quantification for rofecoxib and tizanidine was found to be 135.00 ng/spot and 90.00 ng/spot respectively. The percentage assay was found between the range of 99.58% to 103.21% for rofecoxib and 98.73% to 101.55% for tizanidine respectively, whereas recovery was found between 99.97% to 100.43% for rofecoxib and 100.00% to 101.00% for tizanidine by standard addition method. The proposed method is accurate, precise and rapid for the simultaneous determination of rofecoxib and tizanidine in dosage form


Author(s):  
Ibrahim M. Abdulbaqi ◽  
Yusrida Darwis ◽  
Nurzalina Abdul Karim Khan ◽  
Reem Abou Assi ◽  
Gabriel Onn Kit Loh

Objective: To develop and validate a stability-indicating reversed phase high-performance liquid chromatography (RP-HPLC) method for the determination of colchicine in bulk and ethosomal gel nano-formulation.Methods: The chromatographic conditions were optimized using stainless steel Hypersil Gold C-18 analytical column with the dimensions of 250 mm x 4.6 mm ID x 5 µm. The mobile phase consisted of acetonitrile and ammonium acetate buffer (20 mmol/l, pH=4.85) in the ratio of 32:68 v/v. The flow rate was set at 1 ml/min and the detection wavelength was 353 nm. The column was maintained at 30 °C and the injection volume was 10 µl. The stability of colchicine in different conditions was investigated by exposing the drug to stress degradation using acid, base, oxidation, heat and light.Results: There was no interference from excipients, impurities, dissolution media or degradation products at the retention time of colchicine 5.9 min indicating the specificity of the method. The limit of detection (LOD) and the limit of quantification (LOQ) were 8.64 ng/ml and 26.17 ng/ml respectively. The drug showed good stability under heat, acid, oxidation and light, but substantial degradation was observed under alkali condition. The procedure was validated for specificity, linearity, accuracy and precision.Conclusion: A simple, rapid, specific and stability-indicating HPLC–UV method for the determination of colchicine in the pure and ethosomal gel was successfully developed. The developed method was statistically confirmed to be accurate, precise, and reproducible.


Sign in / Sign up

Export Citation Format

Share Document