scholarly journals ISOLATION OF Streptomyces sp. FROM LAPINDO MUD SOIL, SIDOARJO, EAST JAVA PROVINCE, INDONESIA AS A LARVICIDE CANDIDATE AGAINST Aedes aegypti

2017 ◽  
Vol 53 (2) ◽  
pp. 118
Author(s):  
Subagyo Yotopranoto ◽  
Rochmah Kurnijasanti ◽  
Etik Ainun Rohmah

Streptomyces sp. is a bacterium that can live in many kind of habitations e.i. marine, sea sponge, coastal area, soil, desert soil, river bank etc. Many antibiotics and secondary metabolites are produced by this bacterium. Several secondary metabolites of the bacterium can be used as an insecticide against insects including mosquito larva.The purpose of this study was to search and isolate until species of Streptomyces sp. from Sidoarjo Lapindo mud soil in East Java province that can be used as a larvicide against Aedes aegypti larva, the dengue haemorrhagic fever vector.The method of study was to collect several mud soil samples from Sidoarjo Lapindo. The collected samples were cultured in ISP-4 media for producing mix-cultures. Then, to isolate the suspected colony of Streptomyces sp. by culturing again in several replications on ISP-4 media in petri-dish. The pure isolates were cultured in ISP-4 slant media. There were could be obtained eight pure isolates of Streptomyces sp.The characterization of 16S rRNA of Streptomyces sp. was done in order to determine the species. DNA isolation was done and followed by DNA sequencing, then compared to Gene Bank with BLAST program. The results showed that the sequence nucleotide bases of Streptomyces Sp-D6 had high similarity to Streptomyces sp. 171524, beside the sequence nucleotide bases of Streptomyces Sp-D7 and Sp-D9 had high similarity to Strepto-myces sp. ACT-01578 and ACT-175695. These three species can be used as larvicide candidate against Ae. aegypti.

2021 ◽  
Vol 59 (1) ◽  
pp. 1
Author(s):  
Doan Thi Mai Huong

In a recent study, we described two new lavandulylated flavonoids, along with eight known compounds from the culture broth of a Streptomyces sp. (strain G246), isolated from the sponge Halichondria panicea, collected in the sea of Son Tra peninsula (Da Nang). A comparison study was conducted to differentiate between solid and liquid fermentation technique for secondary metabolites production of strain G246. In this paper, we report the isolation and structural characterization of 9 secondary metabolites (1-9) from strain G246 by solid state fermentation. Compound 3 was the only one similarity between these fermentation techniques.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


2021 ◽  
Vol 105 (8) ◽  
pp. 3145-3157
Author(s):  
Munenori Takehara ◽  
Masayuki Saimura ◽  
Haruka Inaba ◽  
Yoshinao Kato ◽  
Shogo Muro ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 94
Author(s):  
Cláudia Ferreira ◽  
Rui Oliveira

Synthetic fungicides for crops protection raise environmental and human concerns due to accumulation in edible vegetables, showing significant toxicity to humans, and in soil, groundwater and rivers, affecting ecological balance. In addition, they are prone to the development of resistant strains because of the single target-based mechanism of action. Plant extracts provide attractive alternatives, as they constitute a rich source of biodegradable secondary metabolites, such as phenols, flavonoids and saponins, which have multiple modes of antifungal action and a lower probability of the development of resistant fungi. This work has the objective of identifying plant extracts with antifungal activity, aiming to contribute to food safety and sustainable agricultural practices. We selected a saponin-containing plant, Plantago major, and extracted secondary metabolites with 50% (v/v) ethanol, dried by evaporation, and dissolved in water. For antifungal activity, the phytopathogenic fungi Colletotrichum acutatum, Colletotrichum gloeosporioides, Colletotrichum godetiae, Colletotrichum nymphaeae, Diplodia corticola and Phytophthora cinnamomi were selected because they affect fruits and vegetables, such as strawberry, almond, apple, avocado, blueberry and chestnut trees. The aqueous extract was incorporated into PDA medium at different concentrations and mycelial discs were placed in the center of each Petri dish. Growth was measured as the radial mycelial growth at 3, 6, and 9 days incubation at 25 °C in the dark. The maximum growth inhibition (32.2%) was obtained against P. cinnamomi with 2000 µg/mL extract followed by C. gloeosporioides (25.7%) on the sixth day and by C. godetiae and C. nymphaeae (21.1%) on the ninth day. Results show that P. major presents antifungal activity in all phytopathogenic fungi tested and the extract can be used to protect important crops, by inhibiting the development of fungal infections and promoting food security and a sustainable agriculture.


Author(s):  
Syed Jahangir Hussain ◽  
Mohamed Murshid Nowshad ◽  
Nooruddin Thajuddin ◽  
Tamil Kumar Tamilarasan ◽  
Parveez Ahamed Abdul Azees
Keyword(s):  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jung Eun Huh ◽  
Seunghee Han ◽  
Taeseon Yoon

Abstract Objective In this study we compare the amino acid and codon sequence of SARS-CoV-2, SARS-CoV and MERS-CoV using different statistics programs to understand their characteristics. Specifically, we are interested in how differences in the amino acid and codon sequence can lead to different incubation periods and outbreak periods. Our initial question was to compare SARS-CoV-2 to different viruses in the coronavirus family using BLAST program of NCBI and machine learning algorithms. Results The result of experiments using BLAST, Apriori and Decision Tree has shown that SARS-CoV-2 had high similarity with SARS-CoV while having comparably low similarity with MERS-CoV. We decided to compare the codons of SARS-CoV-2 and MERS-CoV to see the difference. Though the viruses are very alike according to BLAST and Apriori experiments, SVM proved that they can be effectively classified using non-linear kernels. Decision Tree experiment proved several remarkable properties of SARS-CoV-2 amino acid sequence that cannot be found in MERS-CoV amino acid sequence. The consequential purpose of this paper is to minimize the damage on humanity from SARS-CoV-2. Hence, further studies can be focused on the comparison of SARS-CoV-2 virus with other viruses that also can be transmitted during latent periods.


Acta Tropica ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 275-281 ◽  
Author(s):  
Desiely S. Gusmão ◽  
Adão V. Santos ◽  
Danyelle C. Marini ◽  
Mauricio Bacci ◽  
Marília A. Berbert-Molina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document