scholarly journals Protective Antifungal Activity of Plantago major Extract Against the Phytopathogenic Fungi Phytophthora cinnamomi, Diplodia corticola and Colletotrichum Species

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 94
Author(s):  
Cláudia Ferreira ◽  
Rui Oliveira

Synthetic fungicides for crops protection raise environmental and human concerns due to accumulation in edible vegetables, showing significant toxicity to humans, and in soil, groundwater and rivers, affecting ecological balance. In addition, they are prone to the development of resistant strains because of the single target-based mechanism of action. Plant extracts provide attractive alternatives, as they constitute a rich source of biodegradable secondary metabolites, such as phenols, flavonoids and saponins, which have multiple modes of antifungal action and a lower probability of the development of resistant fungi. This work has the objective of identifying plant extracts with antifungal activity, aiming to contribute to food safety and sustainable agricultural practices. We selected a saponin-containing plant, Plantago major, and extracted secondary metabolites with 50% (v/v) ethanol, dried by evaporation, and dissolved in water. For antifungal activity, the phytopathogenic fungi Colletotrichum acutatum, Colletotrichum gloeosporioides, Colletotrichum godetiae, Colletotrichum nymphaeae, Diplodia corticola and Phytophthora cinnamomi were selected because they affect fruits and vegetables, such as strawberry, almond, apple, avocado, blueberry and chestnut trees. The aqueous extract was incorporated into PDA medium at different concentrations and mycelial discs were placed in the center of each Petri dish. Growth was measured as the radial mycelial growth at 3, 6, and 9 days incubation at 25 °C in the dark. The maximum growth inhibition (32.2%) was obtained against P. cinnamomi with 2000 µg/mL extract followed by C. gloeosporioides (25.7%) on the sixth day and by C. godetiae and C. nymphaeae (21.1%) on the ninth day. Results show that P. major presents antifungal activity in all phytopathogenic fungi tested and the extract can be used to protect important crops, by inhibiting the development of fungal infections and promoting food security and a sustainable agriculture.

2021 ◽  
Vol 3 (1) ◽  
pp. 27
Author(s):  
Cláudia Ferreira ◽  
Rui Oliveira

Several phytopathogenic fungi greatly affect the production of important crops across the globe, as they lead to huge losses. To control diseases caused by fungal phytopathogens, a wide range of synthetic fungicides are applied in the fields. However, these agrochemicals are harmful for ecosystems (aerial, aquatic and terrestrial), non-target organisms and humans. In addition, since these antifungals have one specific cellular target, fungi can acquire resistance to them via the accumulation of mutations. Plant extracts provide natural alternatives to the use of synthetic fungicides in agriculture. Several plants are rich in secondary metabolites, including alkaloids, coumarins, flavonoids, terpenoids and saponins, which confer antifungal activity. This sustainable option is biodegradable, environmentally friendly and proves to be safer, and it is less prone to development resistance since they often have several cellular targets. This study was conducted to investigate the antifungal activity of Urtica dioica extract against Colletotrichum acutatum, Colletotrichum gloeosporioides, Colletotrichum godetiae, Colletotrichum nymphaeae, Diplodia corticola and Phytophthora cinnamomi. Urtica dioica extract was prepared with 50% (v/v) ethanol, the solvent was evaporated at a low pressure, and the residue was dissolved in water. The extract was incorporated into PDA medium at different concentrations (100, 500, 1000 and 2000 µg/mL) and mycelial discs were placed in the center of each Petri dish. Growth was measured in terms of radial mycelial growth in the third, sixth and ninth days of incubation, at 25 °C and in the dark. Urtica dioica extract was able to inhibit the growth of all strains except C. nymphaeae. Growth inhibition was around 20% at 2000 µg/mL for the remaining Colletotrichum species. An inhibition of growth was also observed with D. corticola in a concentration-dependent manner, from 100 µg/mL to 2000 µg/mL and revealed statistically significant differences (p < 0.05) between these concentrations. Regarding the growth of P. cinnamomi, significant differences were observed between the 100 µg/mL and 2000 µg/mL extract (p < 0.0001 and p < 0.05 on day 3 and 6, respectively). The most pronounced mycelial growth reduction (39.9%) was observed on day 3, an effect that is significantly different from (24.9%; p < 0.05) the result observed on the sixth day of incubation. Overall, the results of this work suggest U. dioca as a potential, ecologically sustainable alternative to conventional fungicides to protect crops from damage caused by phytopathogenic fungi.


2007 ◽  
Vol 13 (5) ◽  
pp. 341-347 ◽  
Author(s):  
R. Pérez-Sánchez ◽  
F. Infante ◽  
C. Gálvez ◽  
J.L. Ubera

The yield, chemical composition, and antifungal properties of essential oils from six populations of Thymus zygis Loefl. ex L. were studied. Phytopathogenic fungi Pythium irregulare, Rhizoctonia solani, Colletotrichum acutatum, Fusarium oxysporum, and Sclerotinia sclerotiorum showed a clear inhibition in the poisoned food test. Inhibition is tested by EC50. This activity indicator ranges from 86 ppm in the most active oils to 577 ppm. Among the identified components of the oils, 3-octanol and α-terpinene had the highest correlation with the antifungal activity. Yield, antifungal activity, and plant morphology, led to the selection of the population T. zygis ssp. gracilis harvested at flowering stage as most suitable for potential agronomical use.


2012 ◽  
Vol 52 (4) ◽  
pp. 458-462 ◽  
Author(s):  
Abdul Aziz A. Al-Askar

Abstract The antifungal activities of ethanolic extracts of three Saudi plants; camel thorn (Alhagi maurorum Medic.), caper (Capparisspinosa L.), and pomegranate (Punica granatum L.) were investigated in vitro against Alternaria alternata, Fusarium oxysporum, Phomadestructiva, Rhizoctonia solani, and Sclerotium rolfsii at concentrations of 0, 3, 6, and 9% (v/v). All tested plant extracts; seeds, roots, and rinds had different degrees of antifungal activity against the tested fungi. When compared with the control, the highest antifungal activity was recorded for camel thorn seeds extract at a concentration of 9%, while, pomegranate rinds extract at 9% came in second. Camel thorn rinds extract came in last even when used at a high concentration. The ethanolic extract of camel thorn seeds may be recommended as a potent bio-fungicide. Extensive studies should be undertaken for the ethanolic extract of camel thorn seeds as a strong antifungal agent against fungal plant diseases.


2015 ◽  
Vol 10 (50) ◽  
pp. 4554-4560 ◽  
Author(s):  
Castillo Reyes Francisco ◽  
Daniel Hern aacute ndez Castillo Francisco ◽  
Alberto Clemente Constantino Julio ◽  
Gallegos Morales Gabriel ◽  
Rodr iacute guez Herrera Ra uacute l ◽  
...  

2018 ◽  
Vol 1 (3) ◽  
pp. 52-62
Author(s):  
Sara Omran ◽  
Abdulghani Alsamarai ◽  
Firas Razzzaq

Background: Fungal infections are one of the common skin diseases with difficulty in their treatment approach. The present efficient drugs for fungal infection are limited. Aim: To determine the therapeutic efficacy of plant extracts as alternative antifungal agents. Materials and methods: 100 clinical samples [68 from female and 32 from male] were collected during the period from March to July 2017 from subjects attending Dermatology Clinic in Salah Uldean General Hospital. Fungal infection was diagnosed with using KOH wet preparation. Fungal species identified by using conventional approach. The active ingredients existing in the plant extracts were detected and analyzed through qualitative and quantitative detection technique of chemical compounds using a high performance liquid chromatographic device (HPLC). Agar diffusion method was used to determine antifungal activity of plant extracts. Results: Direct microscopic examination showed that there were (75%) positive samples, while culture shows (67%) positive samples. The isolated dermatophytes belong to Epidermophyoton, Microsporum, and Trichophyton genus. The predominant dermatophytes were T. rubrum (25%) species. The highest frequency of infection was in the age group of 11-20 years. The sensitivity of the tested fungi to the aqueous and alcoholic plant extracts varies. Alcoholic extract of the hot pepper plant was more effective as antifungal than the aqueous extract of the same plant. However, aqueous hot pepper extracts was more effective against T. mentagrophyte than that of alcoholic extract. Additionally, alcoholic Sumac extract shows higher efficacy that aqueous extract. Conclusion: Hot pepper and Sumac extracts show antifungal activity against Microsporum canis, Trichophyton rubrum and T. mentagrophyte.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Carine M.N. Ngaffo ◽  
Simplice B. Tankeo ◽  
Michel-Gael F. Guefack ◽  
Brice E. N. Wamba ◽  
Paul Nayim ◽  
...  

Abstract Background: Bacterial infections involving the multidrug resistant (MDR) strains are among the top leading causes of death throughout the world. Healthcare system across the globe has been suffering from an extra-ordinary burden in terms of looking for the new and more potent antimicrobial compounds. The aim of the present study was to determine the antibacterial activity of some Cameroonian edible plants (Garcinia lucida bark, Phoenix dactylifera pericarps, Theobroma cacao pod, Solanum macrocarpon leaves and Termitomyces titanicus whole plant) and their antibiotics-potentiation effects against some MDR Gram-negative bacteria phenotypes expressing efflux pumps (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Providencia stuartii strains). Methods: The antibacterial activities of plant extract alone and in combination with usual antibiotics were carried out using the micro-dilution method. The effects of the most active plant extract (Garcinia lucida bark) on H+-ATPase-mediated proton pumps and on bacterial growth kinetic were performed using experimental protocols, while qualitative reference methods were used to highligh the major groups of secondary metabolites present in the extracts. Results: Qualitative phytochemical screening of plant extracts indicated that all analysed secondary metabolites were present in Theobroma cacao and Termitomyces titanicus while one (saponins) of them was absent in Garcinia lucida and Solanum macrocarpon. Only three of them (polyphenols, flavonoids and saponins) were detected in Phoenix dactylifera. Antibacterial essays showed that G. lucida was the most active plant as it inhibited the growth of all studied bacteria with strong activity (MIC<100 µg/mL) against E. coli ATCC8739, significant activity (100≤MIC≤512 µg/mL) against 80% of bacteria and moderate activity (512<MIC≤2048 µg/mL) against E. coli AG100A and E. aerogenes (EA289 and CM64). It was followed by T. cacao and S. macrocarpon extracts which exhibited an antibacterial potential against 95% and 80% of bacterial strains, respectively. These three extracts exhibited a bactericidal effect on a few bacteria. Extracts from T. titanicus and P. dactylifera were less active as they moderately (512<MIC≤2048 µg/mL) inhibited the growth of 35% and 10% of bacteria. All extracts selectively potentiated the activities of all antibiotics with improvement activity factors (IAF) ranging from 2 to 256. G. lucida, T. cacao and S. macrocarpon potentiated the activities of 100%, 89% and 67% of antibiotics respectively against more than 70%, suggesting that they contain bioactive compounds which could be considered as efflux pumps inhibitors. Whereas T. titanicus and P. dactylifera improved the activities of almost 40% and 20% of antibiotics, respectively. This increase of activities also characterizes synergistic effects between antibiotics and these bioactive compounds. G. lucida extract at all tested concentrations, strongly inhibited the growth of bacterial strain E. coli ATCC8739 and exhibited an inhibitory effect on this bacterial H+-ATPase-mediated proton pumps increasing the pH of the medium. Conclusion: The overall results indicated that food plants among which G. lucida, T. cacao and S. macrocarpon could have a benefit interest in combatting resistant types of bacteria. Keywords: Food plants; infectious diseases; MDR bacteria; efflux pumps; antibiotics; secondary metabolites.


Sign in / Sign up

Export Citation Format

Share Document