scholarly journals Rheological characteristics of steel in continuous roll casting-rolling

2021 ◽  
Vol 5 (3) ◽  
Author(s):  
O.V. Kholiavik ◽  
Alexey Nogovitsyn ◽  
Alexey Kravchuk ◽  
Alexey Samoylenko ◽  
Ruslan Boris

Problems. In the process of obtaining a strip in a casting and rolling device, the question arises of combining the process of hot rolling of the solidified material and the process of crystallization of the liquid melt. This makes it possible to implement an efficient technology for producing thin-sheet products. Purpose of the study. Determination of rational parameters for performing mathematical modeling of material behavior during roll casting requires clearly defined recommendations. The material for the rolling process is steel. The starting material was used in solid, solid-liquid and liquid states. Implementation technique. The analysis of the properties of steel was carried out on the basis of the results of experiments obtained at the Physico-Technological Institute of Metals and Alloys of the National Academy of Sciences of Ukraine. To analyze the rheological properties of steel, the dependences of the yield stress for alloyed and carbon steels were used in a certain temperature range. The selected temperature range includes solidus and solid-liquid state of steel, located above 0.8 melting point. Research results. Based on the research results, the analysis of the rheological properties of steel in solid, solid-liquid and liquid states during continuous casting-rolling on rolls was carried out. The use of the obtained dependencies makes it possible to perform mathematical modeling of the deformation and hydrodynamics of the material during continuous casting-rolling of steel strips using roll casting-rolling devices. Conclusions. The constructed dependences, together with studies of the viscosity of steel in the liquid state and the resistance of steel to deformation in the solid state, most fully describe the rheological properties of steels during casting-deformation processes. The obtained dependences will make it possible to implement an ultra-efficient technology for producing thin-sheet rolled products.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4200
Author(s):  
Zhigang Li ◽  
Hao Jiang ◽  
Minghui Wang ◽  
Hongjie Jia ◽  
Hongjiang Han ◽  
...  

As the applications of heterogeneous materials expand, aluminum laminates of similar materials have attracted much attention due to their greater bonding strength and easier recycling. In this work, an alloy design strategy was developed based on accumulative roll bonding (ARB) to produce laminates from similar materials. Twin roll casting (TRC) sheets of the same composition but different cooling rates were used as the starting materials, and they were roll bonded up to three cycles at varying temperatures. EBSD showed that the two TRC sheets deformed in distinct ways during ARB processes at 300°C. Major recrystallizations were significant after the first cycle on the thin sheet and after the third cycle on the thick sheet. The sheets were subject to subsequent aging for better mechanical properties. TEM observations showed that the size and distribution of nano-precipitations were different between the two sheet sides. These nano-precipitations were found to significantly promote precipitation strengthening, and such a promotive effect was referred to as hetero-deformation induced (HDI) strengthening. Our work provides a new promising method to prepare laminated heterogeneous materials with similar alloy TRC sheets.


2015 ◽  
Vol 11 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Honggao Xu ◽  
Qiang Peng ◽  
Fang Yuan ◽  
Yanxiang Gao

Abstract Effective diffusion coefficient (D-value) is an important parameter for the extraction process. In this study, a cylindrical model to estimate the D-value of betanin extraction from red beet roots was developed. The influence of extraction temperature, pH, cylindrical thickness and type of acids on the D-value was also investigated. The optimal parameters of betanin extraction were 30°C, pH 4.0 adjusted with sulfurous acid or acetic acid. D-values under the above conditions were 18.95×10−11 m2/s and 17.87×10−11 m2/s, respectively. The result showed that D-value elevated with the increase of cylindrical thickness, which was consistent with earlier conclusion from spherical model. The modeling may be useful for the investigation into extraction process and practical application.


2019 ◽  
Vol 19 (3) ◽  
pp. 231-241
Author(s):  
E. G. Martynova ◽  
S. A. Velichko ◽  
A. V. Martynov

Introduction. Nowadays, vacuum-type dough dividers are used in industries with a production volume of up to 4,000 loaves per day. In the dough divider operation, due to wear of the working surfaces of the piston, chamber, and drum, the gap between them goes beyond the value equal to 50 microns, which provides vacuum in the suction chamber. As a result, the suction process becomes unstable; the dough divider disturbs the weight accuracy of bakery goods. Repair of such equipment is carried out mainly through a full or partial replacement of worn parts and assemblies with new ones. To increase their durability, there is a need to develop a new highly efficient technology with the restoration of worn part surfaces using the welding and surfacing methods.Materials and Methods. A new technique of determining the number of objects for research using the “STATISTICA” program is presented. Wear surfaces of the vacuum dough divider parts are determined.Research Results. Micrometric studies of the dough divider components were carried out. They showed the presence of appreciable size distortions due to the local wear of the working surfaces. In this case, a side gap between the suction chamber and the main piston and between the drum and the suction chamber is 6 times higher than the permissible one, and a vertical gap between the division box and the piston exceeds the permissible gap by more than 10 times. Wear of the working surfaces of the dough divider parts is local in nature, while the range of values is as follows: for the main piston, it is 10-200 microns; for the gaging piston, it is 250- 900 microns; for the suction chamber and division box, it is 300-400 microns; for the drum surfaces, it is 280-300 microns.Discussion and Conclusions. The conducted micrometric studies showed the presence of appreciable size distortions due to the local wear of the working surfaces. Based on the results obtained, it can be argued that the most productive and economically viable technique for the restoration of worn surfaces of dough divider parts is, for example, the electrospark machining.


2006 ◽  
Vol 11 (6) ◽  
pp. 575-595 ◽  
Author(s):  
L. Fusi ◽  
A. Farina ◽  
D. Ambrosi

The mechanical behavior of a mixture composed by an elastic solid and a fluid that exchange mass is investigated. Both the liquid flow and the solid deformation depend on how the solid phase has increased (diminished) its mass, i.e. on the mass conversion between constituents. The model is developed introducing a decomposition of the solid phase deformation gradient. In particular, exploiting the criterion of maximization of the rate of entropy production, we determine an explicit evolution equation for the so-called growth tensor which involves directly the solid stress tensor. An example of a possible choice of the constitutive functions is also presented.


Sign in / Sign up

Export Citation Format

Share Document