scholarly journals Modelling of the Thermodynamic Properties of the Plasma Mixture

2021 ◽  
Vol 17 (1) ◽  
pp. 49-57
Author(s):  
A. S. Polyukhin ◽  

Numerical modelling of the thermodynamic properties of plasma mixture is performed using the Thomas – Fermi model with two different approaches. For this purpose, a numerical algorithm, as well as program realization, is developed to solve the Thomas – Fermi equations with quantum-exchange corrections. For the first time a comparison between different methods for taking account of the heterogeneous composition of plasma is made and an algorithm for estimating the corrections for mixtures is developed.

1987 ◽  
Vol 42 (9) ◽  
pp. 943-947
Author(s):  
I. Agil ◽  
A. Alharkan ◽  
H . Alhendi ◽  
A. Alnaghmoosh

It is shown that leading corrections, to the ionization energy, of many-electrons atom, can be expressed as leading corrections of initial slope of trial variational solutions of the Thomas-Fermi equation. Some variational solutions with different initial slopes are compared. A comparison of the results shows, that as far as the binding energies are concerned a trial function with its slope not close to the (negative) Baker’s constant may not be suited.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 399-404 ◽  
Author(s):  
Zi-Jiang Liu ◽  
Xiao-Ming Tan ◽  
Yuan Guo ◽  
Xiao-Ping Zheng ◽  
Wen-Zhao Wu

The thermodynamic properties of tetragonal CaSiO3 perovskite are predicted at high pressures and temperatures using the Debye model for the first time. This model combines the ab initio calculations within local density approximation using pseudopotentials and a plane wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. It is found that the calculated equation of state is in excellent agreement with the observed values at ambient condition. Based on the first-principles study and the Debye model, the thermal properties including the Debye temperature, the heat capacity, the thermal expansion and the entropy are obtained in the whole pressure range from 0 to 150 GPa and temperature range from 0 to 2000 K.


1997 ◽  
Vol 75 (1) ◽  
pp. 77-82 ◽  
Author(s):  
M. Apostol ◽  
F. Rachdi ◽  
C. Goze ◽  
L. Hajji

Sodium (Na) clusters in octahedral cages of Na-intercalated fullerides Na6C60 and Na11C60 are studied within a Thomas–Fermi model. It is shown that the tetrahedral Na4 cluster in Na6C60 has an electric charge ~ +2.7 (in electron charge units), while the body-centered cubic Na9 cluster in Na11C60 is almost electrically neutral. Keywords: sodium clusters, alkali fullerides, Thomas–Fermi theory, ionization charge.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1662
Author(s):  
Gabriel Lipkowitz ◽  
Karoline Sofie Hennum ◽  
Eleonora Piva ◽  
Eleanor Schofield

If left to dry uncontrollably following excavation, marine archaeological wood suffers significant and irreparable damage. Conservation treatments are required to consolidate degraded wood and to remove residual water. Drying must be controlled to eliminate erratic and heterogeneous water removal. Monitoring and understanding the drying process progression is invaluable information to garner real-time knowledge to correlate with chemical and physical material properties, and to develop future conservation strategies. Here, polyethylene glycol (PEG) consolidated marine archaeological wood was periodically sampled during drying to determine the moisture content as a function of location, time, and sample depth. The heterogeneous nature of the material leads to significant noise across spatial and temporal measurements, making it challenging to elucidate meaningful conclusions from visual observation of the raw data. Therefore, the spatiotemporal data was computationally analysed to produce a representative model of the ship’s drying, illustrated by a dynamic simulation. From this we can quantitatively predict the drying rate, determine the depth-dependence of drying, and estimate the resulting equilibrium moisture content. This is the first time such simulations have been carried out on this material and conservation process, demonstrating the power of applying numerical modelling to further our understanding of complex heritage data.


1983 ◽  
Vol 44 (3) ◽  
pp. 333-342 ◽  
Author(s):  
I.K. Dmitrieva ◽  
G.I. Plindov

1980 ◽  
Vol 35 (6) ◽  
pp. 628-636 ◽  
Author(s):  
Levente Szasz

The l a method for an atom or molecule is transformed into an all-electron pseudopotential formalism. The equations of the X ɑ method are exactly transformed into pseudo-orbital equations and the resulting pseudopotentials are replaced by simple density-dependent potentials derived from Thomas-Fermi model. It is shown that the new formalism satisfies the virial theorem. As the first application it is shown that the model explains the shell-structure of atoms by the property that the pseudo-orbitals for the (ns), (np), (nd) etc. electrons are, in a very good approximation, the solutions of the same equation and have their maxima at the same point thereby creating the peaks in the radial density characterizing the shell structure


Sign in / Sign up

Export Citation Format

Share Document