scholarly journals Study on Utility of Different Multipurpose Trees as Black Pepper Standards in Lateritic Soil of Uttara Kannada District of Karnataka, India

Author(s):  
L. Venkatesh ◽  
M. J. Manju ◽  
K. L. Kavya ◽  
K. P. Singh
Planta Medica ◽  
2009 ◽  
Vol 75 (09) ◽  
Author(s):  
S Chuchawankul ◽  
S Toomhom ◽  
R Mingpakanee ◽  
C Patarapanich ◽  
N Khorana

Planta Medica ◽  
2011 ◽  
Vol 77 (05) ◽  
Author(s):  
HRW Dharmaratne ◽  
BL Tekwani ◽  
NPD Nanayakkara
Keyword(s):  

2015 ◽  
Vol 4 (3) ◽  
pp. 460-468
Author(s):  
Yap Chin Ann

The last nutrient management review of black pepper was done in 1968. There is, therefore, a need to develop new technology to improve pepper production and transfer that technology to production site. This experiment was carried out to study the effect of newly developed biochemical fertilizer on some physiological characteristics, yield and soil fertility of pepper. The treatment consisted of T1 (BS): chemical fertilizer (N:12%, P:12%, K:17%); T2 (BK1): biochemical fertilizer F1 N:15%, P:5%, K:14) and T3 (BK2): biochemical fertilizer F2 (N:13%, P:4%, K:12). The biochemical fertilizer F1 out-yielded chemical and biochemical fertilizer F2 by 75.38% and 16.45% respectively with the higher yield being associated with various phonotypical alterations, which are reported here. Significant measureable changes were observed in physiological processes and plant characteristics, such as large leaf area index, more chlorophyll content and high photosynthesis rate coupled with lower transpiration rate in biochemical fertilizer F1(BK1) treatment compared with other treatment. The high fertility level in biochemical fertilizer F1 and biochemical fertilizer F2 (BK2) reflected the important of organic material in improving soil quality. In conclusion, the achieve high growth performance and yield in pepper, chemical fertilizer alone is insufficient whilst combination of organic and inorganic fertilizer with balance nutrient content gave a significant increase in yield and growth of pepper. 


2017 ◽  
Vol 26 (1) ◽  
pp. 27 ◽  
Author(s):  
B Saranya ◽  
T Sulfikarali ◽  
S Chindhu ◽  
A M Muneeb ◽  
N K Leela ◽  
...  

Antioxidant activity of sequential extracts of black pepper, ginger, turmeric and cinnamon was determined by DPPH assay, phosphomolybdate method and ferric reducing power method and compared with that of the synthetic antioxidant BHA. The results revealed that methanol extract of cinnamon has highest antioxidant potential followed by chloroform extract of turmeric. The antioxidant potential was also correlated with total phenol content.  


Author(s):  
Nasser Gholijani ◽  
Esmaeil Hashemi ◽  
Zahra Amirghofran

Background: Macrophages are the main players involved in inflammation. Intercellular adhesion molecule-1 (ICAM-1) facilitates macrophage polarization prior to extravasation into inflamed tissue. Piperine a natural product derived from black pepper possess useful biological and pharmacological activities. In current study, the possible anti-inflammatory effect of piperine on the expression of ICAM-1 on J774.1 murine macrophage cell line was investigated. Methods: Lipopolysaccharide (LPS)-stimulated J774.1 cells were cultured in the presence of different concentrations of piperine to examine the changes in ICAM-1 expression by real-time PCR and flow cytometry. Results: We found that piperine decreased ICAM-1 gene expression level from 2.4 ± 0.25 RFC (relative fold change) in LPS-only treated cells to 0.85 ± 0.525 RFC at 1μg/ml (p<0.05), 0.43 ± 0.27 RFC at 10μg/ml (p<0.01), and 0.26 ± 0.25 RFC at 20μg/ml (p<0.01). In flow cytometry, piperine at all concentrations significantly decreased ICAM-1 surface expressions (P<0.05). The geometric mean fluorescence intensity (g-MFI) in LPS-only treated cells (792 ± 57.3) decreased to 482±70 gMFI at 20 µg/ml piperine. Conclusion: According to the results of this study, by decreasing the expression of ICAM-1, piperine is suggested as a candidate to reduce inflammation and has the potential for therapeutic benefits for immune-mediated diseases.


1977 ◽  
Vol 25 (5) ◽  
pp. 483 ◽  
Author(s):  
N Malajczuk ◽  
AJ Mccomb ◽  
CA Parker

On lateritic podzolic soils in Western Australia Eucalyptus calophylla is resistant to Phytophthora cinnamomi whereas Eucalyptus marginata is susceptible and eventually killed by the pathogen. On loam soils both eucalypts are resistant. Possible mechanisms for resistance of E. calophylla in lateritic soil and the inhibitory action of loam soils were investigated. Aseptically raised eucalypt seedlings succumbed to infection in liquid culture tubes. The mechanism of infection was compared by light and electron microscopy which showed similar fungal invasion and penetration into roots of both eucalypt species. Vegetative hyphae initially penetrated intercellularly and proliferated rapidly within cortical and stelar tissue. Intracellular invasion of these tissues occurred 48hr after initial infection through dissolution of the host cell wall. Chlamydospores were formed within a number of cortical cells. Unsuberized roots of mature trees produced aseptically showed reactions to invasion similar to those of the eucalypt seedling roots. Suberized roots were not invaded. The addition of small quantities of lateritic soil to sterile sand so as to introduce soil micro-organisms without altering the chemical and physical status of the sand, and subsequent inoculation of the sand with P.cinnamomi, resulted in a reduction of root damage on both eucalypts when compared with seedlings raised in sterile sand. Roots of E.calophylla were less severely damaged than those of E.marginata. The addition of small quantities of loam soil significantly reduced root damage in seedlings of both species. These results parallel both pot experiments and field observations, and suggest that microorganisms of the rhizosphere may be an important factor in the resistance of E.calophylla to infection, and in the inhibitory effect of loam soil on P.cinnamomi.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 732
Author(s):  
Mohammed H. Alqarni ◽  
Prawez Alam ◽  
Ahmed I. Foudah ◽  
Magdy M. Muharram ◽  
Faiyaz Shakeel

Due to unavailability of sustainable analytical techniques for the quantitation of piperine (PPN) in food and pharmaceutical samples, there was a need to develop a rapid and sensitive sustainable analytical technique for the quantitation of PPN. Therefore, the current research presents a fast and highly sensitive normal/reversed-phase high-performance thin-layer chromatography (HPTLC) technique with classical univariate calibration for the quantitation of PPN in various food spices of black pepper with traditional (TE) and ultrasound-assisted extracts (UBE) of various food spices of Piper nigrum L. under green analytical chemistry viewpoint. The amount of PPN in TE of four different spices of black pepper—namely BPMH, BPLU, BPSH, and BPPA—was found to be 309.53, 304.97, 282.82, and 232.73 mg g−1, respectively using a sustainable normal-phase HPTLC technique. However, the amount of PPN in UBE of BPMH, BPLU, BPSH, and BPPA was recorded as 318.52, 314.60, 292.41, and 241.82 mg g−1, respectively using a sustainable normal phase HPTLC technique. The greenness of normal/reversed-phase HPTLC technique was predicted using AGREE metric approach. The eco-scale was found to be 0.90, suggested excellent greenness of normal/reversed-phase technique. UBE of PPN was also found to be superior over TE of PPN. Overall, the results of this research suggested that the proposed normal/reversed-phase densitometry technique could be effectively used for the quantitation of PPN in food and pharmaceutical samples.


2021 ◽  
Vol 1734 ◽  
pp. 012011
Author(s):  
A Olowofoyeku ◽  
O Ofuyatan ◽  
J Oluwafemi ◽  
P Iroaganachi

Sign in / Sign up

Export Citation Format

Share Document