scholarly journals Taluka Wise Study of Rainfall Pattern in Nanded District of Marthwada Region (Maharashtra) Using Rainfall Data

Author(s):  
Ramesh Bethala B. V. Asewar ◽  
M. S. Peneke K. K. Dakhore ◽  
M. G. Jadhav A. M. Khobragade

About 60 per cent of the total cultivable area of the country is rainfed. However, prolonged dry periods affect the final crop production. Monsoon is an important season for water supplies, from surface reservoir. Uneven distribution of rainfall, affect the agricultural production remarkably. The daily rainfall data was collected for each taluka of Nanded district for the period of 20 years (1998-2017) and it was to be summed up on meteorological weekly, monthly, seasonally, annual basis for each taluka of Nanded district basis for the study of rainfall characterization. The results indicated that weekly mean annual basis total rainfall was ranged between 720.0 mm in Deglur and 1009.9 mm in Mahur. The weekly highest rainfall on annual basis was recorded in Himayat Nagar (53.7 mm) in the 30th MW amongst all the taluka considering monsoon period (23 to 42 MW). The monthly mean rainfall indicated that the lowest and highest monthly mean rainfall amongst all the taluka was observed in Nanded, Kandhar, Loha, Hadgaon, Bhokar, Kinwat, Mahur, Dharmabad, Ardhapur, Naigaon talukas (0.0 mm) in the December month and in the Mahur taluka (283.1 mm) in July month. The seasonal distribution of Nanded district was obtained in winter season (6.1 mm), in summer (15.5 mm), in monsoon (578.3 mm), in post monsoon (216.6 mm). The annual rainfall data is statistical analyzed for Nanded district and within the year and taluka to taluka ranged C.V. (%) were between 25.0 to 46.9 %. The data of taluka-wise annual normal of weather parameter (i.e. rainfall and rainy days) calculated. Here, the results indicated that the onset of monsoon was observed in 23th MW and withdrawal in 43rd MW in Nanded district. It showed that average rainfall of Nanded district is 816.4 mm with 45.0 rainy days per year. The results clearly indicated the onset of monsoon in 23th MW and withdrawal of monsoon in 43rd MW for the Nanded district should be considered. The statistical analysis for rainfall variability was worked out and it was intra-annual as well as intra-taluka variation in Nanded district. It was ranged between 19.0 to 51.0 per cent with annual mean 45.0 rainy days per year.

2021 ◽  
Author(s):  
Rajaram Prajapati ◽  
Rocky Talchabhadel ◽  
Priya Silwal ◽  
Surabhi Upadhyay ◽  
Brandon Ertis ◽  
...  

Abstract Understanding spatio-temporal variability in rainfall patterns is crucial for evaluating water balances needed for water resources planning and management. This paper investigates spatio-temporal variability in rainfall and assesses the frequency of daily rainfall observations from seven stations in the Kathmandu Valley, Nepal, from 1971–2015. Daily rainfall totals were classified into five classes, namely, A (light rain, daily rainfall < 10 mm in a day), B (between 10–50 mm), C (between 50–100 mm), D (between 100–150 mm) and E (> 150 mm). The relationship between daily rainfall and rainfall frequency of various rainfall rate classes were analysed. Kriging method was used for interpolation in interpreting seasonal and annual rainfall data and spatial maps were generated using QGIS. The Mann-Kendall (MK) test was performed to determine the temporal trends and Theil-Sen’s (TS) slope estimator was used in quantifying the magnitude of trends. Mountain stations showed a decreasing trend in rainfall for all seasons, ranging from − 8.4 mm/year at Sankhu to -21.8 mm/year at Thankot, whereas, a mixed pattern was found on the Valley floor. Mean annual rainfall in the Valley was 1610 mm. Both annual rainfall and the number of rainy days decreased in the Kathmandu Valley over the study period. The study indicated a significant reduction in rainfall after 2000. Since springs and shallow groundwater are the primary sources of water supply for residents in the Kathmandu Valley, it is apparent that decreasing rainfall will have (and is already having) an adverse impact on domestic, industrial, and agricultural water supplies, and the livelihoods of people.


MAUSAM ◽  
2021 ◽  
Vol 65 (1) ◽  
pp. 67-72
Author(s):  
PRAGYAN KUMARI ◽  
RAJAN KUMAROJHA ◽  
AWADOOD WADOOD ◽  
RAMESH KUMAR

Daily rainfall data of 56 years (1956-2011) of Palamau district of Jharkhand have been considered to analyse the long term average and its temporal variability on weekly, monthly, seasonal and annual basis. The average annual rainfall at Palamau was 1138 mm with 34 per cent coefficient of variation indicating thereby that the rainfall was not much stable over the years. July was the highest rainfall recipient month (332 mm) followed by August (310 mm) during the monsoon period. Trend analysis on rainfall of past 56 years exhibited a decreasing pattern of 8.33 mm and 7.04 mm per year in annual and kharif season rainfall, respectively. Agricultural drought was most frequently observed in early (23-26 SMW) as well as late (37-40 SMW) stages of kharif crops. Meteorological droughts of different intensities, viz., mild, moderate and severe over the observed periods showed that station is prone to mild-moderate type of drought. Short duration, low water requiring but high value crops like maize, pulses, oilseeds and some vegetables can be opted for this region to minimize the production risk.


2021 ◽  
Vol 8 (1) ◽  
pp. 23-35
Author(s):  
Ahmad Cahyadi ◽  
Eko Haryono ◽  
Tjahyo Nugroho Adji ◽  
Margaretha Widyastuti ◽  
Indra Agus Riyanto ◽  
...  

Karst area is highly susceptible to changes to climate parameters. One of the parameters is rainfall variability. In addition to shaping the condition of water resources, rainfall in the Gunung Sewu karst area determines the nature of crop and livestock of the agriculture sectors―the local population's main economic activities, warranting the significance of the rainfall variability studies. Rainfall variability in karst areas also affects disaster conditions such as drought and floods. However, due to insufficient meteorological data in quality and quantity, there has been no rainfall variability studies conducted in this locality. The research intended to analyze rainfall variability in the Gunung Sewu karst area in 1979‒2013 by utilizing rainfall predictions from satellite images that many scholars had tested in different locations and recognized as having good quality. In the analysis, mean monthly rainfall was calculated, and the trends of annual rainfall and average rainfall intensity, dry and rainy seasons, the number of rainy days, and the effect of ENSO (El Niño Southern Oscillation) on rainfall were analyzed. The research data were 35 years of daily rainfall records derived from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR). The analysis results showed that the mean rainfall, number of rainy days, and rainfall intensity had an increasing trend. Also, El Niño quantitatively influenced the rain in the Gunung Kidul karst area.


2021 ◽  
Vol 16 (3) ◽  
pp. 898-907
Author(s):  
S. KOKILAVANI S. KOKILAVANI ◽  
SP. Ramanathan SP. Ramanathan ◽  
GA. Dheebakaran ◽  
N.K. Sathyamoorthy ◽  
B. Arthirani B. Arthirani ◽  
...  

Understanding the pattern of regional climatic extremes is essential for creating an important adaptation measure to safeguard farmers from monsoon tantrums. This paper focuses on the rainfall variability and intensity for spatially different locations of Tamil Nadu. The daily rainfall data over a period of 30 years (1990-2019) for the study locations were collected from the constituent research centres of TNAU. The results indicated that an increasing trend in SWM rainfall was observed in Coimbatore (209.3 to 300.6mm), Ooty (681.4 to 703.1mm), Aduthurai (227.8 to 320.6mm), Kovilpatti (132.8 to 141.3 mm) while the decreasing trend was observed in rest of the places. A decreasing trend was reported in general for all the places during NEM. The decreasing trend in the number of rainy days was registered in Kovilpatti, Virudhunagar and Killikulam that exhibits an alert in modifying the crop planning programme in those areas. The frequency of rainfall intensity revealed that except Ooty, the number of Heavy Rain (HR) to VHR(VHR) was found to be meagre to absent in most of the study locations.


2018 ◽  
Vol 10 (4) ◽  
pp. 799-817 ◽  
Author(s):  
Tesfa Worku ◽  
Deepak Khare ◽  
S. K. Tripathi

Abstract Global warming is a significant global environmental problem in the 21st century. The problem is high in developing countries, particularly sub-Saharan countries in which the majority of the population live on rainfed agriculture. The present study aimed to undertake spatiotemporal analysis of seasonal and annual rainfall and temperature and its implications. The MK test, Sen's slope and precipitation concentration index (PCI) were applied. Finally, Pearson correlation analysis between climatic variables and crop production was analysed. The Mann–Kendall test results showed that the annual and seasonal rainfall trend was highly variable. The minimum and maximum temperatures have increased by 0.8 and 1.1 °C/year, respectively. Based on PCI results, rainfall during the summer and spring seasons is moderately distributed as compared to annual and winter season rainfall. Based on these observations, the rainfall pattern and distribution of the area could be classified as irregular and erratic distribution. Results of correlation analysis between monthly and seasonal rainfall with crop production were insufficient to conclude the impact of rainfall and temperature on crop production. In view of this, the incidence of food shortage is a common occurrence. Therefore, depending on the historical trend of rainfall variability and prolonged temperature increase, appropriate coping and adaptation strategies need to be encouraged.


2021 ◽  
Author(s):  
Rabi C. Gautam

Lake Simcoe Region Conservation Authority is monitoring the phosphorous loading in Lake Simcoe and to understand the changes in phosphorous loading due to runoff, it is prudent to characterize the rainfall data of the watershed contributing to Lake Simcoe. In this project, hourly and daily rainfall data from 13 different raingage statistics surrounding Lake Simcoe was analyzed to identify event, monthly, seasonal and annual statistics and their trend and thereby to identify the driest and wettest and average annual rainfall. After initial analysis, daily rainfall data from only 4 stations with consistent data for an approximate period of 20 years were chosen for further analysis. The results showed that hydrological year 1995-1996 was the wettest and hydrologic year 1991-1992 was the driest year. Similarly summer season and the month of June were the wettest and winter season and month of February were the driest for the watershed. No significant trend was observed in the yearly and monthly rainfall data while an increasing trend was observed at 3 stations for the winter season.


2011 ◽  
Vol 47 (2) ◽  
pp. 241-266 ◽  
Author(s):  
R. D. STERN ◽  
P. J. M. COOPER

SUMMARYRainfall variability, both within and between seasons, is reflected in highly variable crop growth and yields in rainfed agriculture in sub-Saharan Africa and results in varying degrees of weather-induced risk associated with a wide range of crop, soil and water management innovations. In addition there is both growing evidence and concern that changes in rainfall patterns associated with global warming may substantively affect the nature of such risk. Eighty-nine years of daily rainfall data from a site in southern Zambia are analysed. The analyses illustrate approaches to assessing the extent of possible trends in rainfall patterns and the calculation of weather-induced risk associated with the inter- and intra-seasonal variability of the rainfall amounts. Trend analyses use monthly rainfall totals and the number of rain days in each month. No simple trends were found. The daily data were then processed to examine important rain dependent aspects of crop production such as the date of the start of the rains and the risk of a long dry spell, both following planting and around flowering. The same approach is used to assess the risk of examples of crop disease in instances when a ‘weather trigger’ for the disease can be specified. A crop water satisfaction index is also used to compare risks from choices of crops with different maturity lengths and cropping strategies. Finally a different approach to the calculations of these risks fits a Markov chain model to the occurrence of rain, with results then derived from this model. The analyses shows the relevance of this latter approach when relatively short daily rainfall records are available and is illustrated through a comparison of the effects of El Niño, La Niña and Ordinary years on rainfall distribution patterns.


2021 ◽  
Author(s):  
Rabi C. Gautam

Lake Simcoe Region Conservation Authority is monitoring the phosphorous loading in Lake Simcoe and to understand the changes in phosphorous loading due to runoff, it is prudent to characterize the rainfall data of the watershed contributing to Lake Simcoe. In this project, hourly and daily rainfall data from 13 different raingage statistics surrounding Lake Simcoe was analyzed to identify event, monthly, seasonal and annual statistics and their trend and thereby to identify the driest and wettest and average annual rainfall. After initial analysis, daily rainfall data from only 4 stations with consistent data for an approximate period of 20 years were chosen for further analysis. The results showed that hydrological year 1995-1996 was the wettest and hydrologic year 1991-1992 was the driest year. Similarly summer season and the month of June were the wettest and winter season and month of February were the driest for the watershed. No significant trend was observed in the yearly and monthly rainfall data while an increasing trend was observed at 3 stations for the winter season.


2010 ◽  
Vol 11 (1) ◽  
pp. 26-45 ◽  
Author(s):  
Nityanand Singh ◽  
Ashwini Ranade

Abstract Characteristics of wet spells (WSs) and intervening dry spells (DSs) are extremely useful for water-related sectors. The information takes on greater significance in the wake of global climate change and climate-change scenario projections. The features of 40 parameters of the rainfall time distribution as well as their extremes have been studied for two wet and dry spells for 19 subregions across India using gridded daily rainfall available on 1° latitude × 1° longitude spatial resolution for the period 1951–2007. In a low-frequency-mode, intra-annual rainfall variation, WS (DS) is identified as a “continuous period with daily rainfall equal to or greater than (less than) daily mean rainfall (DMR) of climatological monsoon period over the area of interest.” The DMR shows significant spatial variation from 2.6 mm day−1 over the extreme southeast peninsula (ESEP) to 20.2 mm day−1 over the southern-central west coast (SCWC). Climatologically, the number of WSs (DSs) decreases from 11 (10) over the extreme south peninsula to 4 (3) over northwestern India as a result of a decrease in tropical and oceanic influences. The total duration of WSs (DSs) decreases from 101 (173) to 45 (29) days, and the duration of individual WS (DS) from 12 (18) to 7 (11) days following similar spatial patterns. Broadly, the total rainfall of wet and dry spells, and rainfall amount and rainfall intensity of actual and extreme wet and dry spells, are high over orographic regions and low over the peninsula, Indo-Gangetic plains, and northwest dry province. The rainfall due to WSs (DSs) contributes ∼68% (∼17%) to the respective annual total. The start of the first wet spell is earlier (19 March) over ESEP and later (22 June) over northwestern India, and the end of the last wet spell occurs in reverse, that is, earlier (12 September) from northwestern India and later (16 December) from ESEP. In recent years/decades, actual and extreme WSs are slightly shorter and their rainfall intensity higher over a majority of the subregions, whereas actual and extreme DSs are slightly (not significantly) longer and their rainfall intensity weaker. There is a tendency for the first WS to start approximately six days earlier across the country and the last WS to end approximately two days earlier, giving rise to longer duration of rainfall activities by approximately four days. However, a spatially coherent, robust, long-term trend (1951–2007) is not seen in any of the 40 WS/DS parameters examined in the present study.


2018 ◽  
Vol 10 (12) ◽  
pp. 1879 ◽  
Author(s):  
Véronique Michot ◽  
Daniel Vila ◽  
Damien Arvor ◽  
Thomas Corpetti ◽  
Josyane Ronchail ◽  
...  

Knowledge and studies on precipitation in the Amazon Basin (AB) are determinant for environmental aspects such as hydrology, ecology, as well as for social aspects like agriculture, food security, or health issues. Availability of rainfall data at high spatio-temporal resolution is thus crucial for these purposes. Remote sensing techniques provide extensive spatial coverage compared to ground-based rainfall data but it is imperative to assess the quality of the estimates. Previous studies underline at regional scale in the AB, and for some years, the efficiency of the Tropical Rainfall Measurement Mission (TRMM) 3B42 Version 7 (V7) (hereafter 3B42) daily product data, to provide a good view of the rainfall time variability which is important to understand the impacts of El Nino Southern Oscilation. Then our study aims to enhance the knowledge about the quality of this product on the entire AB and provide a useful understanding about his capacity to reproduce the annual rainfall regimes. For that purpose we compared 3B42 against 205 quality-controlled rain gauge measurements for the period from March 1998 to July 2013, with the aim to know whether 3B42 is reliable for climate studies. Analysis of quantitative (Bias, Relative RMSE) and categorical statistics (POD, FAR) for the whole period show a more accurate spatial distribution of mean daily rainfall estimations in the lowlands than in the Andean regions. In the latter, the location of a rain gauge and its exposure seem to be more relevant to explain mismatches with 3B42 rather than its elevation. In general, a good agreement is observed between rain gauge derived regimes and those from 3B42; however, performance is better in the rainy period. Finally, an original way to validate the estimations is by taking into account the interannual variability of rainfall regimes (i.e., the presence of sub-regimes): four sub-regimes in the northeast AB defined from rain gauges and 3B42 were found to be in good agreement. Furthermore, this work examined whether TRMM 3B42 V7 rainfall estimates for all the grid points in the AB, outgoing longwave radiation (OLR) and water vapor flux patterns are consistent in the northeast of AB.


Sign in / Sign up

Export Citation Format

Share Document