scholarly journals A secure communication scheme based on adaptive modified projective combination synchronization of fractional-order hyper-chaotic systems

2021 ◽  
Vol 9 Proceeding (1) ◽  
pp. 95-102
Author(s):  
Tarek Houmor ◽  
Hadjer Zerimeche ◽  
Abdelhak Berkane
2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2008 ◽  
Vol 22 (24) ◽  
pp. 4175-4188 ◽  
Author(s):  
YANG TANG ◽  
JIAN-AN FANG ◽  
LIANG CHEN

In this paper, a simple and systematic adaptive feedback method for achieving lag projective stochastic perturbed synchronization of a new four-wing chaotic system with unknown parameters is presented. Moreover, a secure communication scheme based on the adaptive feedback lag projective synchronization of the new chaotic systems with stochastic perturbation and unknown parameters is presented. The simulation results show the feasibility of the proposed method.


2013 ◽  
Vol 23 (02) ◽  
pp. 1350030 ◽  
Author(s):  
SHIU-PING WANG ◽  
SENG-KIN LAO ◽  
HSIEN-KENG CHEN ◽  
JUHN-HORNG CHEN ◽  
SHIH-YAO CHEN

In recent years, there has been expanding research on the applications of fractional calculus to the areas of signal processing, modeling and controls. Analog circuit implementation of chaotic systems is used in studying nonlinear dynamical phenomena, which is also applied in realizing the controller development. In this paper, chain fractance and tree fractance circuits are constructed to realize the fractional-order Chen–Lee system. The results are in good agreement with those obtained from numerical simulation. This study shows that not only is this system related to gyro motion but can also be applied to electronic circuits for secure communication.


Author(s):  
Ali Soleimanizadeh

In this paper synchronization problem for two different fractional-order chaotic systems has been investigated. Based on fractional calculus, optimality conditions for this synchronization have been achieved. Synchronization Time and control signals are two factors that are optimized. After that, the synchronization method is applied in secure communication. Finally using the simulation example, the performance of the proposed method for synchronization and chaotic masking is shown.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1881 ◽  
Author(s):  
Nadia M. G. Al-Saidi ◽  
Dhurgham Younus ◽  
Hayder Natiq ◽  
M. R. K. Ariffin ◽  
M. A. Asbullah ◽  
...  

Using different chaotic systems in secure communication, nonlinear control, and many other applications has revealed that these systems have several drawbacks in different aspects. This can cause unfavorable effects to chaos-based applications. Therefore, presenting a chaotic map with complex behaviors is considered important. In this paper, we introduce a new 2D chaotic map, namely, the 2D infinite-collapse-Sine model (2D-ICSM). Various metrics including Lyapunov exponents and bifurcation diagrams are used to demonstrate the complex dynamics and robust hyperchaotic behavior of the 2D-ICSM. Furthermore, the cross-correlation coefficient, phase space diagram, and Sample Entropy algorithm prove that the 2D-ICSM has a high sensitivity to initial values and parameters, extreme complexity performance, and a much larger hyperchaotic range than existing maps. To empirically verify the efficiency and simplicity of the 2D-ICSM in practical applications, we propose a symmetric secure communication system using the 2D-ICSM. Experimental results are presented to demonstrate the validity of the proposed system.


Sign in / Sign up

Export Citation Format

Share Document