scholarly journals Avatar Locomotion in Crowd Simulation

2011 ◽  
Vol 10 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Nuria Pelechano ◽  
Bernhard Spanlang ◽  
Alejandro Beacco

This paper presents an Animation Planning Mediator (APM) designed to synthesize animations efficiently for virtual characters in real time crowd simulation. From a set of animation clips, the APM selects the most appropriate and modifies the skeletal configuration of each character to satisfy desired constraints (e.g. eliminating foot-sliding or restricting upper body torsion), while still providing natural looking animations. We use a hardware accelerated character animation library to blend animations increasing the number of possible locomotion types. The APM allows the crowd simulation module to maintain control of path planning, collision avoidance and response. A key advantage of our approach is that the APM can be integrated with any crowd simulator working in continuous space. We show visual results achieved in real time for several hundreds of agents, as well as the quantitative ac-curacy.

2021 ◽  
Vol 9 (4) ◽  
pp. 405
Author(s):  
Raphael Zaccone

While collisions and groundings still represent the most important source of accidents involving ships, autonomous vessels are a central topic in current research. When dealing with autonomous ships, collision avoidance and compliance with COLREG regulations are major vital points. However, most state-of-the-art literature focuses on offline path optimisation while neglecting many crucial aspects of dealing with real-time applications on vessels. In the framework of the proposed motion-planning, navigation and control architecture, this paper mainly focused on optimal path planning for marine vessels in the perspective of real-time applications. An RRT*-based optimal path-planning algorithm was proposed, and collision avoidance, compliance with COLREG regulations, path feasibility and optimality were discussed in detail. The proposed approach was then implemented and integrated with a guidance and control system. Tests on a high-fidelity simulation platform were carried out to assess the potential benefits brought to autonomous navigation. The tests featured real-time simulation, restricted and open-water navigation and dynamic scenarios with both moving and fixed obstacles.


2006 ◽  
Vol 5 (2) ◽  
pp. 25-30 ◽  
Author(s):  
Christian Knöpfle ◽  
Yvonne Jung

In this paper, we will explain our approach to create and animate virtual characters for real-time rendering applications in an easy and intuitive way. Furthermore we show a way how to develop interactive storylines for such real-time environments involving the created characters. We outline useful extensions for character animation based on the VRML97 and X3D standards and describe how to incorporate commercial tools for an optimized workflow. These results were developed within the Virtual Human project. An overview of the project is included in this paper


Author(s):  
Tasher Ali Sheikh ◽  
Swacheta Dutta ◽  
Smriti Baruah ◽  
Pooja Sharma ◽  
Sahadev Roy

The concept of path planning and collision avoidance are two of the most common theories applied for designing and developing in advanced autonomous robotics applications. NI LabView makes it possible to implement real-time processor for obstacle avoidance. The obstacle avoidance strategy ensures that the robot whenever senses the obstacle stops without being collided and moves freely when path is free, but sometimes there exists a probability that once the path is found free and the robot starts moving, then within a fraction of milliseconds, the robot again sense the obstacle and it stops. This continuous swing of stop and run within a very small period of time may cause heavy burden on the system leading to malfunctioning of the components of the system. This paper deals with overcoming this drawback in a way that even after the robot calculates the path is free then also it will wait for a specific amount of time before running it. So as to confirm that if again the sensor detects the obstacle within that specified period then robot don’t need to transit its state suddenly thus avoiding continuous transition of run and stop. Thus it reduces the heavy burden on the system.


Author(s):  
Rouhollah Jafari ◽  
Shuqing Zeng ◽  
Nikolai Moshchuk

In this paper, a collision avoidance system is proposed to steer away from a leading target vehicle and other surrounding obstacles. A virtual target lane is generated based on an object map resulted from perception module. The virtual target lane is used by a path planning algorithm for an evasive steering maneuver. A geometric method which is computationally fast for real-time implementations is employed. The algorithm is tested in real-time and the simulation results suggest the effectiveness of the system in avoiding collision with not only the leading target vehicle but also other surrounding obstacles.


2018 ◽  
Vol 06 (04) ◽  
pp. 231-250 ◽  
Author(s):  
Willson Amalraj Arokiasami ◽  
Prahlad Vadakkepat ◽  
Kay Chen Tan ◽  
Dipti Srinivasan

Autonomous unmanned vehicles are preferable in patrolling, surveillance and, search and rescue missions. Multi-agent architectures are commonly used for autonomous control of unmanned vehicles. Existing multi-robot architectures for unmanned aerial and ground robots are generally mission and platform oriented. Collision avoidance, path-planning and tracking are some of the fundamental requirements for autonomous operation of unmanned robots. Though aerial and ground vehicles operate differently, the algorithms for obstacle avoidance, path-planning and path-tracking can be generalized. Service Oriented Interoperable Framework for Robot Autonomy (SOIFRA) proposed in this work is an interoperable multi-agent framework focused on generalizing platform independent algorithms for unmanned aerial and ground vehicles. SOIFRA is behavior-based, modular and interoperable across unmanned aerial and ground vehicles. SOIFRA provides collision avoidance, and, path-planning and tracking behaviors for unmanned aerial and ground vehicles. Vector Directed Path-Generation and Tracking (VDPGT), a vector-based algorithm for real-time path-generation and tracking, is proposed in this work. VDPGT dynamically adopts the shortest path to the destination while minimizing the tracking error. Collision avoidance is performed utilizing Hough transform, Canny contour, Lucas–Kanade sparse optical flow algorithm and expansion of object-based time-to-contact estimation. Simulation and experimental results from Turtlebot and AR Drone show that VDPGT can dynamically generate and track paths, and SOIFRA is interoperable across multiple robotic platforms.


2020 ◽  
Vol 10 (17) ◽  
pp. 5893
Author(s):  
Maolin Lei ◽  
Ting Wang ◽  
Chen Yao ◽  
Huan Liu ◽  
Zhi Wang ◽  
...  

Self-collisions of a dual-arm robot system can cause severe damage to the robot. To deal with this problem, this paper presents a real-time algorithm for preventing self-collisions in dual-arm systems. Our first contribution in this work is a novel collision model built using discrete spherical bounding volumes with different radii. In addition, we propose a sensitivity index to measure the distance between spheres with different radii in real time. Next, according to the minimal sensitivity index between different spheres, the repulsive velocity is produced at the centers of the spheres (control points), which the robot uses to generate new motion based on the robot kinematic model. The proposed algorithm offers the additional benefits of a decrease in the number of bounding spheres, and a simple collision model that can effectively decrease the computational cost of the process. To demonstrate the validity of the algorithm, we performed simulations and experiments by an upper-body humanoid robot. Although the repulsive velocity acted on the control points, the results indicate that the algorithm can effectively achieve self-collision avoidance by using a simple collision model.


2021 ◽  
Vol 11 (9) ◽  
pp. 3948
Author(s):  
Aye Aye Maw ◽  
Maxim Tyan ◽  
Tuan Anh Nguyen ◽  
Jae-Woo Lee

Path planning algorithms are of paramount importance in guidance and collision systems to provide trustworthiness and safety for operations of autonomous unmanned aerial vehicles (UAV). Previous works showed different approaches mostly focusing on shortest path discovery without a sufficient consideration on local planning and collision avoidance. In this paper, we propose a hybrid path planning algorithm that uses an anytime graph-based path planning algorithm for global planning and deep reinforcement learning for local planning which applied for a real-time mission planning system of an autonomous UAV. In particular, we aim to achieve a highly autonomous UAV mission planning system that is adaptive to real-world environments consisting of both static and moving obstacles for collision avoidance capabilities. To achieve adaptive behavior for real-world problems, a simulator is required that can imitate real environments for learning. For this reason, the simulator must be sufficiently flexible to allow the UAV to learn about the environment and to adapt to real-world conditions. In our scheme, the UAV first learns about the environment via a simulator, and only then is it applied to the real-world. The proposed system is divided into two main parts: optimal flight path generation and collision avoidance. A hybrid path planning approach is developed by combining a graph-based path planning algorithm with a learning-based algorithm for local planning to allow the UAV to avoid a collision in real time. The global path planning problem is solved in the first stage using a novel anytime incremental search algorithm called improved Anytime Dynamic A* (iADA*). A reinforcement learning method is used to carry out local planning between waypoints, to avoid any obstacles within the environment. The developed hybrid path planning system was investigated and validated in an AirSim environment. A number of different simulations and experiments were performed using AirSim platform in order to demonstrate the effectiveness of the proposed system for an autonomous UAV. This study helps expand the existing research area in designing efficient and safe path planning algorithms for UAVs.


Sign in / Sign up

Export Citation Format

Share Document