scholarly journals Formulation and Evaluation of Mupirocin Nimosomal Gel for Topical Drug Delivery System

2020 ◽  
Vol 13 (2) ◽  
pp. 7-17
Author(s):  
Rajesh Akki ◽  
Munagala Gayatri Ramya ◽  
K Navyasri ◽  
Singaram Kathirvel

The present study was to formulate and evaluate the mupirocin niosomal gel using surfactants span 80 & tween 80 for the preparation of niosomes. Mupirocin entrapped niosomes were prepared by ether injection method and transmembrane pH gradient drug uptake process. Niosomes were prepared by altering the ratios between various non-ionic surfactants (span 80 & tween 80) whereas the concentration of cholesterol and drug was kept constant. The prepared niosomes were characterized for size, shape, entrapment efficiency, invitro drug release studies. The highest entrapment efficiency(99.17%) and drug release (96.14%) was obtained for tween 80 (1:5:5) prepared by transmembrane pH gradient method. The best formulation among the two techniques was selected for incorporated into gel formulation. The prepared niosomal gel and plain gel were subjected to evaluation studies like drug content, invitro drug diffusion studies. The studies were demonstrated that niosomal gel was shown beter pharmacological activity than the conventional mupirocin gel. Based on the results it was concluded that niosomal preparations offers more advantageous than the conventional preparations.

Author(s):  
Y Bindu Vani ◽  
C. Surya Prakash Reddy

The present work is concerned with the formulation and evaluation of Piroxicam emulgel employing carbopol 934 and xanthan gum as polymers. The emulgel is prepared by combining the gel and emulsion. The gel in formulations were prepared by dispersing Carbopol 934 and xanthan gum separately in purified water with constant stirring at a moderate speed and then the pH was adjusted to 4 to 5.4 using Tri-ethanol amine (TEA). The oil phase in the emulsion consists of oleic acid and span-80. The aqueous phase in the emulsion was prepared using Tween-80, propylene glycol and distilled water. The prepared emulgel formulations were subjected to evaluation studies like Physical appearance, rheological studies, estimation of drug content and in-vitro drug release. The appearance of prepared emulgel was white. The pH of the emulgel was found to be 5.4. The in vitro drug release studies revealed that formulation F1 showed 85.20% and formulation F2 showed 79.23% of drug release at the end of 8 hrs. The drug release of F1 formulation follows zero order kinetics.


Author(s):  
DR. P. Tripura Sundari ◽  
Akhila G.

In the present work Fluvastatin was taken which is anti-hyper lipidemic drug used for chronic treatment. It belongs to BCS class-II which means low soluble & high permeable drug. The current dosage regimen is 20-80mg for 2-3 times a day. The present work aims at reducing the dose of the drug by converting it into nanocarrier systems. For this purpose, SLN’s were prepared by employing Compritol as lipid, Soyalecithin as lipophilic surfactant, Tween-80/PEG-400 as hydrophilic surfactant systems. The prepared formulations were named as T1 to T4 with Tween-80 and P1 to P4 with PEG-400. All the prepared formulations are evaluated for drug content, entrapment efficiency and drug release studies. Among all the preparations best formulation was found to be P3 in terms of Drug content of 96.2%, Entrapment efficiency of 90.87% , Drug release of 61.0%, Particle size of 578nm with Zeta potential of -26mV. The present study conclusively demonstrated that the solubility of drug was improved by entrapment of drug into solid lipid carrier which led to prolongation of drug release.


Author(s):  
Allam Sasikala

The drugs mostly present are available with less bioavailability  and the problem arises with less permeation or solubility  so extensive work is done to enhance these mechanisms. Not only that drugs should pass hepatic metabolism, Inorder to improve its bioavailability they are formulated as transferosomes which can improve the patient compliance by delivering the drug through the transdermal-route. Soya lecithin is used as a phospholipid whereas Tween 60, Tween 80, Span 60 and Span 80 are used as edge activators. These formulations usually showed more entrapment efficiency. The reason behind this is due to the presence of more phospholipids and as the surfactant concentration increases drug release will be rapid. As our main aim is to enhance the bioavailability this can be achieved by optimizing the concentrations of phospholipid and surfactant one can attain a controlled release of drug through this drug delivery system.


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


2021 ◽  
Vol 09 ◽  
Author(s):  
Mona Qushawy

Background: Metformin (MF) is an antidiabetic drug that belongs to class III of the biopharmaceutical classification system (BCS) which is characterized by high solubility and low permeability. Objective: The study aimed to prepare metformin as nanostructured lipid carriers (MF-NLCs) to control the drug release and enhance its permeability through the biological membrane. Method: 22 full factorial design was used to make the design of MF-NLCs formulations. MF-NLCs were prepared by hot-melt homogenization-ultra sonication technique using beeswax as solid lipid in presence of liquid lipid (either capryol 90 or oleic acid) and surfactant (either poloxamer 188 or tween 80). Results: The entrapment efficiency (EE%) of MF-NLCs was ranged from 85.2±2.5 to 96.5±1.8%. The particle size was in the nanoscale (134.6±4.1 to 264.1±4.6 nm). The value of zeta potential has a negative value ranged from -25.6±1.1 to -39.4±0.9 mV. The PDI value was in the range of (0.253±0.01 to 0.496±0.02). The cumulative drug release was calculated for MF-NLCs and it was found that Q12h ranged from 90.5±1.7 % for MF-NLC1 to 99.3±2.8 for MF-NLC4. Infra-red (IR) spectroscopy and differential scanning calorimetry (DSC) studies revealed the compatibility of the drug with other ingredients. MF-NLC4 was found to the optimized formulation with the best responses. Conclusion: 22 full factorial design succeed to obtain an optimized formulation which controls the drug release and increases the drug penetration.


2014 ◽  
Vol 50 (4) ◽  
pp. 869-876 ◽  
Author(s):  
Neha Gulati ◽  
Upendra Nagaich ◽  
Shubhini Saraf

The objective of the research was to formulate and evaluate selegiline hydrochloride loaded chitosan nanoparticles for the Parkinson's therapy in order to improve its therapeutic effect and reducing dosing frequency. Taguchi method of design of experiments (L9 orthogonal array) was used to get optimized formulation. The selegiline hydrochloride loaded chitosan nanoparticles (SHPs) were prepared by ionic gelation of chitosan with tripolyphosphate anions (TPP) and tween 80 as surfactant. The SHPs had a mean size of (303.39 ± 2.01) nm, a zeta potential of +32.50mV, and entrapment efficiency of SHPs was 86.200 ± 1.38%. The in vitro drug release of SHPs was evaluated in phosphate buffer saline (pH 5.5) using goat nasal mucosa and found to be 82.529% ± 1.308 up to 28 h. Release kinetics studies showed that the release of drug from nanoparticles was anomalous (non-fickian) diffusion indicating the drug release is controlled by more than one process i.e. superposition of both phenomenon, the diffusion controlled as well as swelling controlled release. SHPs showed good stability results as found during stability studies at different temperatures as mentioned in ICH guidelines. The results revealed that selegiline hydrochloride loaded chitosan nanoparticles are most suitable mode of delivery of drug for promising therapeutic action.


Author(s):  
GITA CHAURASIA ◽  
NARENDRA LARIYA

Objective: Ivabradine hydrochloride (IH), a benzazepine derivative used to treat cardiovascular disease angina pectoris. In this study IH-loaded novel carrier systems transfersomes (TFs) and conventional liposomes (CLs) were developed and compared for their efficacy to enhance the stability of drugs from degradation. Methods: TFs formulations (TF-1, TF-2 and TF-3) were prepared by using different biocompatible surfactants; tween-80 (TW), span-80(S) and sodium deoxycholate (SC) in the concentration ratio of 15 parts with 85 parts of soy phosphatidylcholine as phospholipid by thin-film hydration method. These vesicles were compared with CLs formulation (L-1) prepared in 7:3 molar ratio of soy phosphatidylcholine: cholesterol by following the same method. These vesicles were compared for physical appearance, vesicle shape, and size, percentage drug entrapment efficiency (%DEE), deformability index (DI), in vitro percentage cumulative drug release study, and physical stability studies. The chosen optimized novel carriers were observed under scanning electron microscopy. Results: The compared data demonstrated that the physical appearance for all vesicles was turbid and had a spherical shape. The size distribution was in the range of 129.0 nm to 273.5 nm in vesicles. The %DEE (79.0±0.94) and DI (35.0±1.9) was found maximum in TF-1 formulation that was 2.3 times higher than L-1 formulation. The in vitro percentage cumulative drug release study followed second-order polynomial kinetics that was 2.0 times higher than L-1and 2.9 times higher than the plain drug in 30 min (90.4±0.06%) from TF-1. The vesicles were found to be stable at refrigeration conditions. Conclusion: Thus, amongst of all vesicles TW loaded TFs (TF-1) was chosen as an excellent novel vesicular carrier for hydrophilic drugs due to its higher deformability behavior than CLs that protects the certain drugs from biodegradation and provides stability.


2016 ◽  
Vol 12 ◽  
pp. 1-8
Author(s):  
S. Nagalakshmi ◽  
T. Sandeep ◽  
S. Shanmuganathan

Delivery of drug through topical route, delivers most convenient and novel approach. The Skin can offer several advantages as a route of drug administration although its barrier nature makes it difficult for most drugs to penetrate in to and permeate through it. During the past decades there has been a lot of interest in lipid vesicles as a tool to improve topical drug delivery. Vesicular system such as liposomes, niosomes, ethosomes and elastic deformable vesicles provide an alternative for improved skin drug delivery. In fact vesicles can act as drug carriers controlling drug release. The Research findings were intended to develop sustained release of aceclofenac niosomes formulations in order to reduce gastrointestinal disturbances and to provide better effect when applied topically. Niosomes of aceclofenac was prepared by modified ether injection method using different ratio of surfactants (Tween 20, 40, 60 & 80) with cholesterol and drug. The developed formulations were optimized based on the high entrapment efficiency and in-vitro release studies. Optimized batch was selected and made in to topical niosomal gel using gelling agents like carbopol and sodium carboxy methyl cellulose. Formulation were evaluated for various parameters like vesicle shape, vesicle size, entrapment efficiency, drug content, compatibility studies, in-vitro release studies and stability studies. Ether injection method was found to be most satisfactory in terms of niosome particle size, drug entrapment efficiency was found to be 88.68 ±0.64 % and in-vitro release studies showed 40% of sustain drug release at the end of 8 hrs of study when compared with marketed formulation. Hence, the formulated niosomal topical gel was found to be a better alternative when compared to the marketed formulation in terms of better efficacy, bioavailability and permeation.


Author(s):  
DIVYA ◽  
INDERBIR SINGH ◽  
UPENDRA NAGAICH

Objective: The aim of this study is to develop and in vitro evaluation of prepared fluconazole nanogel for seborrheic dermatitis Methods: Fluconazole nanogel was formulated to act against seborrheic dermatitis. The fluconazole nanoparticles were prepared by a simplified evaporation method and evaluated for particle size, entrapment efficiency, and percent in vitro drug release. The nanogel was also characterized based on parameters like particle size, percent entrapment efficiency, shape surface morphology, rheological properties, in vitro release R² = 0.9046, and release kinetics. Results: The nanoparticle with a combination of Eudragit RS and Tween 80 showed the best result with particle size in the range of 119.0 nm to 149.5 nm, with a cumulative percent drug release of 95 % up to 18 h. The formulated nanogel with optimum concentration of HPMC authenticate with particle size 149.50±0.5 with maximum drug release (92.13±0.32) %. Conclusion: Different percentages of polymers (ethyl-cellulose, eudragit, and tween 80) are used as variable components in the formulation of nanogel. The optimized batch showed good physical properties (flow index, spreadability, and viscosity) along with rapid drug release. Therefore, it can be concluded that nanogel containing fluconazole has potential application in topical delivery.


2018 ◽  
Vol 6 (5) ◽  
pp. 71-75
Author(s):  
Paninder Kaur ◽  
J.S Dua ◽  
D.N Prasad

ABSTRACT   In recent years, treatment of infectious disease through Novel Drug delivery system (NDDS) has undergone a revolutionary shift. Niosomes are a Novel Drug Delivery system which has potential application to treat infectious disease topically. Niosomes are non-ionic surfactant vesicles, in which medication is encapsulated in a vesicle for controlled drug release. Ketoconazole niosomes were prepared by using Cholesterol, Span 60/ Span 40 as surfactants, chloroform, and diethyl ether using rotary vacuum evaporator method. Formulation was then evaluated for particle size, drug content, entrapment efficiency, and in-vitro drug release studies. The Entrapment efficiency and drug content were calculated at 225nm using UV spectrophotometer. The drug content was found to be 70.37% for Span 40 and 72.81% for Span 60.The percentage of drug entrapment in niosomes was 60.3 % for Span 40 and 62.21 % for Span 60. FT-IR studies for niosomes containing Span 40 shows -CH stretching (Aliphatic) at 2891 cm-1and2925 cm-1 for niosomes containing Span 60. Ketoconazole niosomal gel was prepared using Carbopol 940, glycerol, Triethanolamine and distilled water. Evaluation of niosomal gel was determined by Physical appearance, pH, viscosity, drug content, entrapment efficiency and In-vitro diffusion studies.The percentage of the drug release from the niosomal gel was found to be 40.78 % for Span 40 and 33.75% for Span 60 . This delivery system is cost effective and simple to prepare as only the prepared gel of niosomes was introduced in Rotary vacuum evaporator for solvent evaporation.    


Sign in / Sign up

Export Citation Format

Share Document