scholarly journals SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product

Author(s):  
Roberto Fernandez-Moran ◽  
Amen Al-Yaari ◽  
Arnaud Mialon ◽  
Ali Mahmoodi ◽  
Ahmad Al Bitar ◽  
...  

The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (τ) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and τ. In this study, we present an alternative SMOS product which was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère). This SMOS-INRA-CESBIO (SMOS-IC) product provides daily SM and τ at the global scale and differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections associated to the antenna pattern and the complex SMOS viewing angle geometry. It considers pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary data sets which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also differs from the current SMOSL3 product (Version 300, V300) in the values of the effective vegetation scattering albedo (ω) and soil roughness parameters. An inter-comparison is presented in this study based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging Spectroradiometer). A 6 year (2010-2015) inter-comparison of the SMOS products SMOS-IC and SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased root mean square difference) for SMOS-IC over most of the pixels. In terms of τ, SMOS-IC τ was found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the Amazonian basin and of the northern mid-latitudes.

2020 ◽  
Vol 4 ◽  
Author(s):  
Anthony Egeru ◽  
John Paul Magaya ◽  
Derick Ansyijar Kuule ◽  
Aggrey Siya ◽  
Anthony Gidudu ◽  
...  

Phenological properties are critical in understanding global environmental change patterns. This study analyzed phenological dynamics in a savannah dominated semi-arid environment of Uganda. We used moderate-resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) imagery. TIMESAT program was used to analyse the imagery to determine key phenological metrics; onset of greenness (OGT), onset of greenness value, end of greenness time (EGT), end of greenness value, maximum NDVI, time of maximum NDVI, duration of greenup (DOG) and range of normalized difference vegetation index (RNDVI). Results showed that thicket and shrubs had the earliest OGT on day 85 ± 14, EGT on day 244 ± 32 and a DOG of 158 ± 25 days. Woodland had the highest NDVI value for maximum NDVI, OGT, EGT, and RNDVI. In the bushland, OGT occurs on average around day 90 ± 11, EGT on day 255 ± 33 with a DOG of 163 ± 36 days. The grassland showed that OGT occurs on day 96 ± 13, EGT on day 252 ± 36 with a total DOG of 156 ± 33 days. Early photosynthesis activity was observed in central to eastern Karamoja in the districts of Moroto and Kotido. There was a positive relationship between rainfall and NDVI across all vegetation cover types as well as between phenological parameters and season dynamics. Vegetation senescence in the sub-region occurs around August to mid-September (day 244–253). The varied phenophases observed in the sub-region reveal an inherent landscape heterogeneity that is beneficial to extensive pastoral livestock production. Continuous monitoring of savannah phenological patterns in the sub-region is required to decipher landscape ecosystem processes and functioning.


2012 ◽  
Vol 51 (8) ◽  
pp. 1519-1530 ◽  
Author(s):  
Iryna Tereshchenko ◽  
Alexander N. Zolotokrylin ◽  
Tatiana B. Titkova ◽  
Luis Brito-Castillo ◽  
Cesar Octavio Monzon

AbstractThe authors explore a new approach to monitoring of desertification that is based on use of results on the relation between albedo and surface temperature for the Sonoran Desert in northwestern Mexico. The criteria of predominance of radiation by using the threshold value of Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) were determined. The radiation mechanism for regulating the temperature of the surface and the definition of threshold values for AVHRR and MODIS NDVI have an objective justification for the energy budget, which is based on the dominance of radiation surface temperature regulation in relation to evapotranspiration. Changes in the extent of arid regions with AVHRR NDVI of <0.08 and MODIS NDVI of <0.10 can be considered to be a characteristic in the evolution of desertification in the Sonoran Desert region. This is true because, in a certain year, the time span of the period when radiation factor predominates is important for the desertification process.


Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Jan Musial ◽  
Alicja Malinska ◽  
Maria Budzynska ◽  
Radoslaw Gurdak ◽  
...  

Soil moisture (SM) plays an essential role in environmental studies related to wetlands, an ecosystem sensitive to climate change. Hence, there is the need for its constant monitoring. SAR (Synthetic Aperture Radar) satellite imagery is the only mean to fulfill this objective regardless of the weather. The objective of the study was to develop the methodology for SM retrieval under wetland vegetation using Sentinel-1 (S-1) satellite data. The study was carried out during the years 2015&ndash;2017 in the Biebrza Wetlands, situated in northeastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The NDVI (Normalized Difference Vegetation Index) was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to soil moisture retrieval for a broad range of NDVI values and soil moisture conditions. The new methodology is based on research into the effect of vegetation on backscatter () changes under different soil moisture and vegetation (NDVI) conditions. It was found that the state of the vegetation may be described by the difference between  VH and  VV, or the ratio of  VV/VH, as calculated from the Sentinel-1 images. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the new developed models and includes the derived indices based on S-1, allowed the estimation of SM for peatlands with reasonable accuracy (RMSE ~ 10 vol. %). Due to the temporal frequency of the two S-1 satellites&rsquo; (S-1A and S-1B) acquisitions, it is possible to monitor SM changes every six days. The conclusion drawn from the study emphasizes a demand for the derivation of specific soil moisture retrieval algorithms that are suited for wetland ecosystems, where soil moisture is several times higher than in agricultural areas.


2019 ◽  
Vol 11 (20) ◽  
pp. 2390 ◽  
Author(s):  
Hao ◽  
Zhao ◽  
Zhang ◽  
Wang ◽  
Jiang

The southern part of the Hebei Province is one of China’s major crop-producing regions. Due to the continuous decline in groundwater level, agricultural water use is facing significant challenges. Precision agricultural irrigation management is undoubtedly an effective way to solve this problem. Based on multisource data (time series soil moisture active passive (SMAP) data, Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and evapotranspiration (ET), and meteorological station precipitation), the irrigation signal (frequency, timing and area) is detected in the southern part of the Hebei Province. The SMAP data was processed by the 5-point moving average method to reduce the error caused by the uncertainty of the microwave data derived SM. Irrigation signals can be detected by removing the precipitation effect and setting the SM change threshold. Based on the validation results, the overall accuracy of the irrigation signal detection is 77.08%. Simultaneously, considering the spatial resolution limitation of SMAP pixels, the SMAP irrigation area was downscaled using the winter wheat area extracted from MODIS NDVI. The analytical results of 55 winter wheat samples (5 samples in a group) showed that winter wheat covered by one SMAP pixel had an 82.72% growth consistency in surface water irrigation period, which can indicate a downscaling effectiveness. According to the above statistical analysis, this paper considers that although the spatial resolution of SMAP data is insufficient, it can reflect the change of SM more sensitively. In areas where the crop pattern is relatively uniform, the introduction of high-resolution crop pattern distribution can be used not only to detect irrigation signals but also to validate the effectiveness of irrigation signal detection by analyzing crop growth consistency. Therefore, the downscaling results can indicate the true winter wheat irrigation timing, area and frequency in the study area.


2021 ◽  
Vol 13 (6) ◽  
pp. 1210
Author(s):  
Trenton D. Benedict ◽  
Jesslyn F. Brown ◽  
Stephen P. Boyte ◽  
Daniel M. Howard ◽  
Brian A. Fuchs ◽  
...  

Vegetation has been effectively monitored using remote sensing time-series vegetation index (VI) data for several decades. Drought monitoring has been a common application with algorithms tuned to capturing anomalous temporal and spatial vegetation patterns. Drought stress models, such as the Vegetation Drought Response Index (VegDRI), often use VIs like the Normalized Difference Vegetation Index (NDVI). The EROS expedited Moderate Resolution Imaging Spectroradiometer (eMODIS)-based, 7-day NDVI composites are integral to the VegDRI. As MODIS satellite platforms (Terra and Aqua) approach mission end, the Visible Infrared Imaging Radiometer Suite (VIIRS) presents an alternate NDVI source, with daily collection, similar band passes, and moderate spatial resolution. This study provides a statistical comparison between EROS expedited VIIRS (eVIIRS) 375-m and eMODIS 250-m and tests the suitability of replacing MODIS NDVI with VIIRS NDVI for drought monitoring and vegetation anomaly detection. For continuity with MODIS NDVI, we calculated a geometric mean regression adjustment algorithm using 375-m resolution for an eMODIS-like NDVI (eVIIRS’) eVIIRS’ = 0.9887 × eVIIRS − 0.0398. The resulting statistical comparisons (eVIIRS’ vs. eMODIS NDVI) showed correlations consistently greater than 0.84 throughout the three years studied. The eVIIRS’ VegDRI results characterized similar drought patterns and hotspots to the eMODIS-based VegDRI, with near zero bias.


2019 ◽  
Vol 11 (5) ◽  
pp. 486 ◽  
Author(s):  
Muhammad Bilal ◽  
Majid Nazeer ◽  
Janet Nichol ◽  
Zhongfeng Qiu ◽  
Lunche Wang ◽  
...  

In this study, Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) Collections 6 and 6.1 (C6 & C6.1) aerosol optical depth (AOD) retrievals with the recommended high-quality flag (QF = 3) were retrieved from Dark-Target (DT), Deep-Blue (DB) and merged DT and DB (DTB) level–2 AOD products for verification against Aerosol Robotic Network (AERONET) Version 3 Level 2.0 AOD data obtained from 2004–2014 for three sites located in the Beijing-Tianjin-Hebei (BTH) region. These are: Beijing, located over mixed bright urban surfaces, XiangHe located over suburban surfaces, and Xinglong located over hilly and vegetated surfaces. The AOD retrievals were also validated over different land-cover types defined by static monthly NDVI (Normalized Difference Vegetation Index) values obtained from the Terra-MODIS level-3 product (MOD13A3). These include non-vegetated surfaces (NVS, NDVI < 0.2), partially vegetated surfaces (PVS, 0.2 ≤ NDVI ≤ 0.3), moderately vegetated surfaces (MVS, 0.3 < NDVI < 0.5) and densely vegetated surfaces (DVS, NDVI ≥ 0.5). Results show that the DT, DB, and DTB-collocated retrievals achieve a high correlation coefficient of ~ 0.90–0.97, 0.89–0.95, and 0.86–0.95, respectively, with AERONET AOD. The DT C6 and C6.1 collocated retrievals were comparable at XiangHe and Xinglong, whereas at Beijing, the percentage of collocated retrievals within the expected error (↔EE) increased from 21.4% to 35.5%, the root mean square error (RMSE) decreased from 0.37 to 0.24, and the relative percent mean error (RPME) decreased from 49% to 27%. These results suggest significant relative improvement in the DT C6.1 product. The percentage of DB-collocated AOD retrievals ↔EE was greater than 70% at Beijing and Xinglong, whereas less than 66% was observed at XiangHe. Similar to DT AOD, DTB AOD retrievals performed well at XiangHe and Xinglong compared with Beijing. Regionally, DB C6 and C6.1-collocated retrievals performed better than DT and DTB in terms of good quality retrievals and relatively small errors. For diverse vegetated surfaces, DT-collocated retrievals reported small errors and good quality retrievals only for NVS and DVS, whereas larger errors were reported for PVS. MVS. DB contains good quality AOD retrievals over PVS, MVS, and DVS compared with NVS. DTB C6.1 collocated retrievals were better than C6 over NVS, PVS, and DVS. C6.1 is substantially improved overall, compared with C6 at local and regional scales, and over diverse vegetated surfaces.


2018 ◽  
Vol 10 (12) ◽  
pp. 1979 ◽  
Author(s):  
Katarzyna Dabrowska-Zielinska ◽  
Jan Musial ◽  
Alicja Malinska ◽  
Maria Budzynska ◽  
Radoslaw Gurdak ◽  
...  

The objective of the study was to estimate soil moisture (SM) from Sentinel-1 (S-1) satellite images acquired over wetlands. The study was carried out during the years 2015–2017 in the Biebrza Wetlands, situated in north-eastern Poland. At the Biebrza Wetlands, two Sentinel-1 validation sites were established, covering grassland and marshland biomes, where a network of 18 stations for soil moisture measurement was deployed. The sites were funded by the European Space Agency (ESA), and the collected measurements are available through the International Soil Moisture Network (ISMN). The SAR data of the Sentinel-1 satellite with VH (vertical transmit and horizontal receive) and VV (vertical transmit and vertical receive) polarization were applied to SM retrieval for a broad range of vegetation and soil moisture conditions. The methodology is based on research into the effect of vegetation on backscatter (σ°) changes under different soil moisture and Normalized Difference Vegetation Index (NDVI) values. The NDVI was derived from the optical imagery of a MODIS (Moderate Resolution Imaging Spectroradiometer) sensor onboard the Terra satellite. It was found that the state of the vegetation expressed by NDVI can be described by the indices such as the difference between σ° VH and VV, or the ratio of σ° VV/VH, as calculated from the Sentinel-1 images in the logarithmic domain. The most significant correlation coefficient for soil moisture was found for data that was acquired from the ascending tracks of the Sentinel-1 satellite, characterized by the lowest incidence angle, and SM at a depth of 5 cm. The study demonstrated that the use of the inversion approach, which was applied to the newly developed models using Water Cloud Model (WCM) that includes the derived indices based on S-1, allowed the estimation of SM for wetlands with reasonable accuracy (10 vol. %). The developed soil moisture retrieval algorithms based on S-1 data are suited for wetland ecosystems, where soil moisture values are several times higher than in agricultural areas.


2018 ◽  
Vol 10 (12) ◽  
pp. 2061 ◽  
Author(s):  
José Melendo-Vega ◽  
M. Martín ◽  
Javier Pacheco-Labrador ◽  
Rosario González-Cascón ◽  
Gerardo Moreno ◽  
...  

The 3-D Radiative Transfer Model (RTM) FLIGHT can represent scattering in open forest or savannas featuring underlying bare soils. However, FLIGHT might not be suitable for multilayered tree-grass ecosystems (TGE), where a grass understory can dominate the reflectance factor (RF) dynamics due to strong seasonal variability and low tree fractional cover. To address this issue, we coupled FLIGHT with the 1-D RTM PROSAIL. The model is evaluated against spectral observations of proximal and remote sensing sensors: the ASD Fieldspec® 3 spectroradiometer, the Airborne Spectrographic Imager (CASI) and the MultiSpectral Instrument (MSI) onboard Sentinel-2. We tested the capability of both PROSAIL and PROSAIL+FLIGHT to reproduce the variability of different phenological stages determined by 16-year time series analysis of Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI). Then, we combined concomitant observations of biophysical variables and RF to test the capability of the models to reproduce observed RF. PROSAIL achieved a Relative Root Mean Square Error (RRMSE) between 6% to 32% at proximal sensing scale. PROSAIL+FLIGHT RRMSE ranged between 7% to 31% at remote sensing scales. RRMSE increased in periods when large fractions of standing dead material mixed with emergent green grasses —especially in autumn—; suggesting that the model cannot represent the spectral features of this material. PROSAIL+FLIGHT improves RF simulation especially in summer and at mid-high view angles.


Author(s):  
Yongchao Zhu ◽  
Simon Pearson ◽  
Dongli Wu ◽  
Ruijing Sun ◽  
Shibo Fang

Soil moisture (SM) products derived from passive satellite missions are playing an increasingly important role in agricultural applications, especially in crop monitoring and disaster warning. Evaluating the dependability of those products before they can be used on a large scale is crucial. In this study, we assessed the level 2 (L2) SM product from the Chinese Fengyun-3C (FY-3C) radiometer against in situ measurements collected from the Chinese Automatic Soil Moisture Observation Stations (CASMOS) during a one-year period from January 1 to December 31, 2016 in Henan, which is an agricultural province in China. Four statistical parameters were used to evaluate the products&rsquo; reliability: mean difference, root-mean-square error (RMSE), unbiased RMSE (ubRMSE), and the correlation coefficient. These statistical indicators revealed that the FY-3C L2 SM product generally did not agree with the in situ SM data from CASMOS. The time-series analysis further indicated that the correlations and estimated error were highly related to the growing periods of the crops in our study area. FY-3C L2 SM data tended to overestimate soil moisture during May, August, and September, when the crops reach their maximum vegetation density, and tended to underestimate the soil moisture content during the rest of the year. The averaged correlation coefficient between FY-3C SM and the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index was 0.55, which demonstrates that the vegetation water content of the crops considerably influences the SM product. To improve the accuracy of the FY-3C SM product, an improved algorithm that can filter out the influences of the crops should be applied in the future.


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 724
Author(s):  
Himangana Gupta ◽  
Lakhvinder Kaur ◽  
Mahbooba Asra ◽  
Ram Avtar ◽  
C. Sudhakar Reddy

Apple cultivation in the Kinnaur district of the northern Indian State of Himachal Pradesh faces challenges from climatic changes and developmental activities. Farmers in the neighboring districts have already faced a major loss of livelihood due to seasonal changes. Therefore, it is important to study the extent of seasonal variations in the apple growing locations of this region. This study makes that attempt by assessing seasonality variations during a 15-year period from 2004 to 2018 when maximum construction activities occurred in this region. The study uses geospatial and statistical techniques in addition to farmer perceptions obtained during a field visit in November 2019. A temporal pattern using a normalized difference vegetation index (NDVI) based on Moderate Resolution Imaging Spectroradiometer (MODIS) was studied for seven apple-growing locations in the district. The results show high seasonal variations and reduced snowfall at lower elevations, resulting in less chilling hours, which are necessary for the healthy growth of apples. The normalized difference snow index (NDSI) and rainfall show a high correlation with apple growth. Local farmers are unprepared for future seasonal disturbances, as they lack early warning systems, insurance for apple crops, and alternative livelihood options.


Sign in / Sign up

Export Citation Format

Share Document