scholarly journals Improving the Performance of 3-D Radiative Transfer Model FLIGHT to Simulate Optical Properties of a Tree-Grass Ecosystem

2018 ◽  
Vol 10 (12) ◽  
pp. 2061 ◽  
Author(s):  
José Melendo-Vega ◽  
M. Martín ◽  
Javier Pacheco-Labrador ◽  
Rosario González-Cascón ◽  
Gerardo Moreno ◽  
...  

The 3-D Radiative Transfer Model (RTM) FLIGHT can represent scattering in open forest or savannas featuring underlying bare soils. However, FLIGHT might not be suitable for multilayered tree-grass ecosystems (TGE), where a grass understory can dominate the reflectance factor (RF) dynamics due to strong seasonal variability and low tree fractional cover. To address this issue, we coupled FLIGHT with the 1-D RTM PROSAIL. The model is evaluated against spectral observations of proximal and remote sensing sensors: the ASD Fieldspec® 3 spectroradiometer, the Airborne Spectrographic Imager (CASI) and the MultiSpectral Instrument (MSI) onboard Sentinel-2. We tested the capability of both PROSAIL and PROSAIL+FLIGHT to reproduce the variability of different phenological stages determined by 16-year time series analysis of Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index (MODIS-NDVI). Then, we combined concomitant observations of biophysical variables and RF to test the capability of the models to reproduce observed RF. PROSAIL achieved a Relative Root Mean Square Error (RRMSE) between 6% to 32% at proximal sensing scale. PROSAIL+FLIGHT RRMSE ranged between 7% to 31% at remote sensing scales. RRMSE increased in periods when large fractions of standing dead material mixed with emergent green grasses —especially in autumn—; suggesting that the model cannot represent the spectral features of this material. PROSAIL+FLIGHT improves RF simulation especially in summer and at mid-high view angles.

2014 ◽  
Vol 18 (2) ◽  
pp. 35-45 ◽  
Author(s):  
Michał T. Chiliński ◽  
Marek Ostrowski

Abstract Remote sensing from unmanned aerial systems (UAS) has been gaining popularity in the last few years. In the field of vegetation mapping, digital cameras converted to calculate vegetation index (DCVI) are one of the most popular sensors. This paper presents simulations using a radiative transfer model (libRadtran) of DCVI and NDVI results in an environment of possible UAS flight scenarios. The analysis of the results is focused on the comparison of atmosphere influence on both indices. The results revealed uncertainties in uncorrected DCVI measurements up to 25% at the altitude of 5 km, 5% at 1 km and around 1% at 0.15 km, which suggests that DCVI can be widely used on small UAS operating below 0.2 km.


Author(s):  
K. H. Lee ◽  
K. T. Lee

The paper presents currently developing method of volcanic ash detection and retrieval for the Geostationary Korea Multi-Purpose Satellite (GK-2A). With the launch of GK-2A, aerosol remote sensing including dust, smoke, will begin a new era of geostationary remote sensing. The Advanced Meteorological Imager (AMI) onboard GK-2A will offer capabilities for volcanic ash remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite. Based on the physical principles for the current polar and geostationary imagers are modified in the algorithm. Volcanic ash is estimated in detection processing from visible and infrared channel radiances, and the comparison of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every 15 min for volcanic ash for pixel sizes of 2 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously, both over water and land. The algorithm has been tested with proxy data generated from existing satellite observations and forward radiative transfer simulations. Operational assessment of the algorithm will be made after the launch of GK-2A scheduled in 2018.


2019 ◽  
Vol 11 (7) ◽  
pp. 749
Author(s):  
Michele Meroni ◽  
Dominique Fasbender ◽  
Raul Lopez-Lozano ◽  
Mirco Migliavacca

The application of detailed process-oriented simulation models for gross primary production (GPP) estimation is constrained by the scarcity of the data needed for their parametrization. In this manuscript, we present the development and test of the assimilation of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite Normalized Difference Vegetation Index (NDVI) observations into a simple process-based model driven by basic meteorological variables (i.e., global radiation, temperature, precipitation and reference evapotranspiration, all from global circulation models of the European Centre for Medium-Range Weather Forecasts). The model is run at daily time-step using meteorological forcing and provides estimates of GPP and LAI, the latter used to simulate MODIS NDVI though the coupling with the radiative transfer model PROSAIL5B. Modelled GPP is compared with the remote sensing-driven MODIS GPP product (MOD17) and the quality of both estimates are assessed against GPP from European eddy covariance flux sites over crops and grasslands. Model performances in GPP estimation (R2 = 0.67, RMSE = 2.45 gC m−2 d−1, MBE = −0.16 gC m−2 d−1) were shown to outperform those of MOD17 for the investigated sites (R2 = 0.53, RMSE = 3.15 gC m−2 d−1, MBE = −1.08 gC m−2 d−1).


2018 ◽  
Vol 10 (10) ◽  
pp. 1601 ◽  
Author(s):  
Carl Talsma ◽  
Stephen Good ◽  
Diego Miralles ◽  
Joshua Fisher ◽  
Brecht Martens ◽  
...  

Accurately estimating evapotranspiration (ET) at large spatial scales is essential to our understanding of land-atmosphere coupling and the surface balance of water and energy. Comparisons between remote sensing-based ET models are difficult due to diversity in model formulation, parametrization and data requirements. The constituent components of ET have been shown to deviate substantially among models as well as between models and field estimates. This study analyses the sensitivity of three global ET remote sensing models in an attempt to isolate the error associated with forcing uncertainty and reveal the underlying variables driving the model components. We examine the transpiration, soil evaporation, interception and total ET estimates of the Penman-Monteith model from the Moderate Resolution Imaging Spectroradiometer (PM-MOD), the Priestley-Taylor Jet Propulsion Laboratory model (PT-JPL) and the Global Land Evaporation Amsterdam Model (GLEAM) at 42 sites where ET components have been measured using field techniques. We analyse the sensitivity of the models based on the uncertainty of the input variables and as a function of the raw value of the variables themselves. We find that, at 10% added uncertainty levels, the total ET estimates from PT-JPL, PM-MOD and GLEAM are most sensitive to Normalized Difference Vegetation Index (NDVI) (%RMSD = 100.0), relative humidity (%RMSD = 122.3) and net radiation (%RMSD = 7.49), respectively. Consistently, systemic bias introduced by forcing uncertainty in the component estimates is mitigated when components are aggregated to a total ET estimate. These results suggest that slight changes to forcing may result in outsized variation in ET partitioning and relatively smaller changes to the total ET estimates. Our results help to explain why model estimates of total ET perform relatively well despite large inter-model divergence in the individual ET component estimates.


2016 ◽  
Vol 14 (3) ◽  
pp. e0907 ◽  
Author(s):  
Mostafa K. Mosleh ◽  
Quazi K. Hassan ◽  
Ehsan H. Chowdhury

This study aimed to develop a remote sensing-based method for forecasting rice yield by considering vegetation greenness conditions during initial and peak greenness stages of the crop; and implemented for “boro” rice in Bangladeshi context. In this research, we used Moderate Resolution Imaging Spectroradiometer (MODIS)-derived two 16-day composite of normalized difference vegetation index (NDVI) images at 250 m spatial resolution acquired during the initial (January 1 to January 16) and peak greenness (March 23/24 to April 6/7 depending on leap year) stages in conjunction with secondary datasets (i.e., boro suitability map, and ground-based information) during 2007-2012 period. The method consisted of two components: (i) developing a model for delineating area under rice cultivation before harvesting; and (ii) forecasting rice yield as a function of NDVI. Our results demonstrated strong agreements between the model (i.e., MODIS-based) and ground-based area estimates during 2010-2012 period, i.e., coefficient of determination (R2); root mean square error (RMSE); and relative error (RE) in between 0.93 to 0.95; 30,519 to 37,451 ha; and ±10% respectively at the 23 district-levels. We also found good agreements between forecasted (i.e., MODIS-based) and ground-based yields during 2010-2012 period (R2 between 0.76 and 0.86; RMSE between 0.21 and 0.29 Mton/ha, and RE between -5.45% and 6.65%) at the 23 district-levels. We believe that our developments of forecasting the boro rice yield would be useful for the decision makers in addressing food security in Bangladesh.


2020 ◽  
Vol 13 (4) ◽  
pp. 1817-1824
Author(s):  
Kuijun Wu ◽  
Weiwei He ◽  
Yutao Feng ◽  
Yuanhui Xiong ◽  
Faquan Li

Abstract. The O2(a1Δg) emission near 1.27 µm is well-suited for remote sensing of global wind and temperature in near-space by limb-viewing observations to its bright signal and extended altitude coverage. However, vibrational–rotational emission lines of the OH dayglow produced by the hydrogen–ozone reaction (H+O3→OH•+O2) overlap the infrared atmospheric band emission (a1Δg→X3Σg) of O2. The main goal of this paper is to discuss the effect of OH emission on the wind and temperature measurements derived from the 1.27 µm O2 dayglow limb-viewing observations. The O2 dayglow and OH dayglow spectrum over the spectral region and altitude range of interest is calculated by using the line-by-line radiative transfer model and the most recent photochemical model. The method of four-point sampling of the interferogram and sample results of measurement simulations are provided for both O2 dayglow and OH dayglow. It is apparent from the simulations that the presence of OH dayglow as an interfering species decreases the wind and temperature accuracy at all altitudes, but this effect can be reduced considerably by improving OH dayglow knowledge.


Fire ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Níckolas Santana

Fire is one of the main modeling agents of savanna ecosystems, affecting their distribution, physiognomy and species diversity. Changes in the natural fire regime on savannas cause disturbances in the structural characteristics of vegetation. Theses disturbances can be effectively monitored by time series of remote sensing data in different terrestrial ecosystems such as savannas. This study used trend analysis in NDVI (Normalized Difference Vegetation Index)–MODIS (Moderate Resolution Imaging Spectroradiometer) time series to evaluate the influence of different fire recurrences on vegetation phenology of the Brazilian savanna in the period from 2001 to 2016. The trend analysis indicated several factors responsible for changes in vegetation: (a) The absence of fire in savanna phytophysiognomies causes a constant increase in MODIS–NDVI, ranging from 0.001 to 0.002 per year, the moderate presence of fire in these areas does not cause significant changes, while the high recurrence results in decreases of MODIS–NDVI, ranging from −0.002 to −0.008 per year; (b) Forest areas showed a high decrease in NDVI, reaching up to −0.009 MODIS–NDVI per year, but not related to fire recurrence, indicating the high degradation of these phytophysiognomies; (c) Changes in vegetation are highly connected to the protection status of the area, such as areas of integral protection or sustainable use, and consequently their conservation status. Areas with greater vegetation conservation had more than 70% of positive changes in pixels with significant tendencies. Absence or presence of fire are the main agents of vegetation change in areas with lower anthropic influence. These results reinforce the need for a suitable fire management policy for the different types of Cerrado phytophysiognomies, in addition to highlighting the efficiency of remote sensing time series for evaluation of vegetation phenology.


2020 ◽  
Vol 4 ◽  
Author(s):  
Anthony Egeru ◽  
John Paul Magaya ◽  
Derick Ansyijar Kuule ◽  
Aggrey Siya ◽  
Anthony Gidudu ◽  
...  

Phenological properties are critical in understanding global environmental change patterns. This study analyzed phenological dynamics in a savannah dominated semi-arid environment of Uganda. We used moderate-resolution imaging spectroradiometer normalized difference vegetation index (MODIS NDVI) imagery. TIMESAT program was used to analyse the imagery to determine key phenological metrics; onset of greenness (OGT), onset of greenness value, end of greenness time (EGT), end of greenness value, maximum NDVI, time of maximum NDVI, duration of greenup (DOG) and range of normalized difference vegetation index (RNDVI). Results showed that thicket and shrubs had the earliest OGT on day 85 ± 14, EGT on day 244 ± 32 and a DOG of 158 ± 25 days. Woodland had the highest NDVI value for maximum NDVI, OGT, EGT, and RNDVI. In the bushland, OGT occurs on average around day 90 ± 11, EGT on day 255 ± 33 with a DOG of 163 ± 36 days. The grassland showed that OGT occurs on day 96 ± 13, EGT on day 252 ± 36 with a total DOG of 156 ± 33 days. Early photosynthesis activity was observed in central to eastern Karamoja in the districts of Moroto and Kotido. There was a positive relationship between rainfall and NDVI across all vegetation cover types as well as between phenological parameters and season dynamics. Vegetation senescence in the sub-region occurs around August to mid-September (day 244–253). The varied phenophases observed in the sub-region reveal an inherent landscape heterogeneity that is beneficial to extensive pastoral livestock production. Continuous monitoring of savannah phenological patterns in the sub-region is required to decipher landscape ecosystem processes and functioning.


2018 ◽  
Vol 10 (10) ◽  
pp. 1632 ◽  
Author(s):  
Bin Yang ◽  
Yuri Knyazikhin ◽  
Donghui Xie ◽  
Haimeng Zhao ◽  
Junqiang Zhang ◽  
...  

Interpreting remotely-sensed data requires realistic, but simple, models of radiative transfer that occurs within a vegetation canopy. In this paper, an improved version of the stochastic radiative transfer model (SRTM) is proposed by assuming that all photons that have not been specularly reflected enter the leaf interior. The contribution of leaf specular reflection is considered by modifying leaf scattering phase function using Fresnel reflectance. The canopy bidirectional reflectance factor (BRF) estimated from this model is evaluated through comparisons with field-measured maize BRF. The result shows that accounting for leaf specular reflection can provide better performance than that when leaf specular reflection is neglected over a wide range of view zenith angles. The improved version of the SRTM is further adopted to investigate the influence of leaf specular reflection on the canopy radiative regime, with emphases on vertical profiles of mean radiation flux density, canopy absorptance, BRF, and normalized difference vegetation index (NDVI). It is demonstrated that accounting for leaf specular reflection can increase leaf albedo, which consequently increases canopy mean upward/downward mean radiation flux density and canopy nadir BRF and decreases canopy absorptance and canopy nadir NDVI when leaf angles are spherically distributed. The influence is greater for downward/upward radiation flux densities and canopy nadir BRF than that for canopy absorptance and NDVI. The results provide knowledge of leaf specular reflection and canopy radiative regime, and are helpful for forward reflectance simulations and backward inversions. Moreover, polarization measurements are suggested for studies of leaf specular reflection, as leaf specular reflection is closely related to the canopy polarization.


2012 ◽  
Vol 51 (8) ◽  
pp. 1519-1530 ◽  
Author(s):  
Iryna Tereshchenko ◽  
Alexander N. Zolotokrylin ◽  
Tatiana B. Titkova ◽  
Luis Brito-Castillo ◽  
Cesar Octavio Monzon

AbstractThe authors explore a new approach to monitoring of desertification that is based on use of results on the relation between albedo and surface temperature for the Sonoran Desert in northwestern Mexico. The criteria of predominance of radiation by using the threshold value of Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) were determined. The radiation mechanism for regulating the temperature of the surface and the definition of threshold values for AVHRR and MODIS NDVI have an objective justification for the energy budget, which is based on the dominance of radiation surface temperature regulation in relation to evapotranspiration. Changes in the extent of arid regions with AVHRR NDVI of <0.08 and MODIS NDVI of <0.10 can be considered to be a characteristic in the evolution of desertification in the Sonoran Desert region. This is true because, in a certain year, the time span of the period when radiation factor predominates is important for the desertification process.


Sign in / Sign up

Export Citation Format

Share Document