scholarly journals Detecting Winter Wheat Irrigation Signals Using SMAP Gridded Soil Moisture Data

2019 ◽  
Vol 11 (20) ◽  
pp. 2390 ◽  
Author(s):  
Hao ◽  
Zhao ◽  
Zhang ◽  
Wang ◽  
Jiang

The southern part of the Hebei Province is one of China’s major crop-producing regions. Due to the continuous decline in groundwater level, agricultural water use is facing significant challenges. Precision agricultural irrigation management is undoubtedly an effective way to solve this problem. Based on multisource data (time series soil moisture active passive (SMAP) data, Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and evapotranspiration (ET), and meteorological station precipitation), the irrigation signal (frequency, timing and area) is detected in the southern part of the Hebei Province. The SMAP data was processed by the 5-point moving average method to reduce the error caused by the uncertainty of the microwave data derived SM. Irrigation signals can be detected by removing the precipitation effect and setting the SM change threshold. Based on the validation results, the overall accuracy of the irrigation signal detection is 77.08%. Simultaneously, considering the spatial resolution limitation of SMAP pixels, the SMAP irrigation area was downscaled using the winter wheat area extracted from MODIS NDVI. The analytical results of 55 winter wheat samples (5 samples in a group) showed that winter wheat covered by one SMAP pixel had an 82.72% growth consistency in surface water irrigation period, which can indicate a downscaling effectiveness. According to the above statistical analysis, this paper considers that although the spatial resolution of SMAP data is insufficient, it can reflect the change of SM more sensitively. In areas where the crop pattern is relatively uniform, the introduction of high-resolution crop pattern distribution can be used not only to detect irrigation signals but also to validate the effectiveness of irrigation signal detection by analyzing crop growth consistency. Therefore, the downscaling results can indicate the true winter wheat irrigation timing, area and frequency in the study area.

2020 ◽  
Vol 12 (8) ◽  
pp. 1297
Author(s):  
Roberto Filgueiras ◽  
Everardo Chartuni Mantovani ◽  
Elpídio Inácio Fernandes-Filho ◽  
Fernando França da Cunha ◽  
Daniel Althoff ◽  
...  

One of the obstacles in monitoring agricultural crops is the difficulty in understanding and mapping rapid changes of these crops. With the purpose of addressing this issue, this study aimed to model and fuse the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) using Landsat-like images to achieve daily high spatial resolution NDVI. The study was performed for the period of 2017 on a commercial farm of irrigated maize-soybean rotation in the western region of the state of Bahia, Brazil. To achieve the objective, the following procedures were performed: (i) Landsat-like images were upscaled to match the Landsat-8 spatial resolution (30 m); (ii) the reflectance of Landsat-like images was intercalibrated using the Landsat-8 as a reference; (iii) Landsat-like reflectance images were upscaled to match the MODIS sensor spatial resolution (250 m); (iv) regression models were trained daily to model MODIS NDVI using the upscaled Landsat-like reflectance images (250 m) of the closest day as the input; and (v) the intercalibrated version of the Landsat-like images (30 m) used in the previous step was used as the input for the trained model, resulting in a downscaled MODIS NDVI (30 m). To determine the best fitting model, we used the following statistical metrics: coefficient of determination (r2), root mean square error (RMSE), Nash–Sutcliffe efficiency index (NSE), mean bias error (MBE), and mean absolute error (MAE). Among the assessed regression models, the Cubist algorithm was sensitive to changes in agriculture and performed best in modeling of the Landsat-like MODIS NDVI. The results obtained in the present research are promising and can enable the monitoring of dynamic phenomena with images available free of charge, changing the way in which decisions are made using satellite images.


2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Changchun Li ◽  
Weinan Chen ◽  
Yilin Wang ◽  
Yu Wang ◽  
Chunyan Ma ◽  
...  

The timely and accurate acquisition of winter wheat acreage is crucial for food security. This study investigated the feasibility of extracting the spatial distribution map of winter wheat in Henan Province by using synthetic aperture radar (SAR, Sentinel-1A) and optical (Sentinel-2) images. Firstly, the SAR images were aggregated based on the growth period of winter wheat, and the optical images were aggregated based on the moderate resolution imaging spectroradiometer normalized difference vegetation index (MODIS-NDVI) curve. Then, five spectral features, two polarization features, and four texture features were selected as feature variables. Finally, the Google Earth Engine (GEE) cloud platform was employed to extract winter wheat acreage through the random forest (RF) algorithm. The results show that: (1) aggregated images based on the growth period of winter wheat and sensor characteristics can improve the mapping accuracy and efficiency; (2) the extraction accuracy of using only SAR images was improved with the accumulation of growth period. The extraction accuracy of using the SAR images in the full growth period reached 80.1%; and (3) the identification effect of integrated images was relatively good, which makes up for the shortcomings of SAR and optical images and improves the extraction accuracy of winter wheat.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Donglian Sun ◽  
Yu Li ◽  
Xiwu Zhan ◽  
Chaowei Yang ◽  
Ruixin Yang

<strong>In this study, optical and microwave satellite observations are integrated to estimate soil moisture at high spatial resolution and applied for drought analysis in the continental United States.  To estimate soil moisture, a new refined model is proposed to estimate soil moisture (SM) with auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed SM model using accumulated precipitation demonstrated close agreements with the </strong><strong>U.S. Drought Monitor (USDM) spatial patterns.  Currently, the USDM is providing a weekly map.  Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively high spatial resolution, thus drought maps based on soil moisture anomalies can be obtained at high spatial resolution on daily basis and made the flash drought analysis and monitoring become possible.</strong>


2019 ◽  
Vol 11 (14) ◽  
pp. 1656 ◽  
Author(s):  
Manuela Balzarolo ◽  
Josep Peñuelas ◽  
Frank Veroustraete

The objective of this paper was to evaluate the use of in situ normalized difference vegetation index (NDVIis) and Moderate Resolution Imaging Spectroradiometer NDVI (NDVIMD) time series data as proxies for ecosystem gross primary productivity (GPP) to improve GPP upscaling. We used GPP flux data from 21 global FLUXNET sites across main global biomes (forest, grassland, and cropland) and derived MODIS NDVI at contrasting spatial resolutions (between 0.5 × 0.5 km and 3.5 × 3.5 km) centered at flux tower location. The goodness of the relationship between NDVIis and NDVIMD varied across biomes, sites, and MODIS spatial resolutions. We found a strong relationship with a low variability across sites and within year variability in deciduous broadleaf forests and a poor correlation in evergreen forests. Best performances were obtained for the highest spatial resolution at 0.5 × 0.5 km). Both NDVIis and NDVIMD elicited roughly three weeks later the starting of the growing season compared to GPP data. Our results confirm that to improve the accuracy of upscaling in situ data of site GPP seasonal responses, in situ radiation measurement biomes should use larger field of view to sense an area, or more sensors should be placed in the flux footprint area to allow optimal match with satellite sensor pixel size.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Donglian Sun ◽  
Yu Li ◽  
Xiwu Zhan ◽  
Chaowei Yang ◽  
Ruixin Yang

In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spatial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipitation, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is providing a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather conditions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and made the flash drought analysis and monitoring become possible.


Author(s):  
Roberto Fernandez-Moran ◽  
Amen Al-Yaari ◽  
Arnaud Mialon ◽  
Ali Mahmoodi ◽  
Ahmad Al Bitar ◽  
...  

The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (&tau;) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and &tau;. In this study, we present an alternative SMOS product which was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d&rsquo;Etudes Spatiales de la BIOsph&egrave;re). This SMOS-INRA-CESBIO (SMOS-IC) product provides daily SM and &tau; at the global scale and differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections associated to the antenna pattern and the complex SMOS viewing angle geometry. It considers pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary data sets which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also differs from the current SMOSL3 product (Version 300, V300) in the values of the effective vegetation scattering albedo (&omega;) and soil roughness parameters. An inter-comparison is presented in this study based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging Spectroradiometer). A 6 year (2010-2015) inter-comparison of the SMOS products SMOS-IC and SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased root mean square difference) for SMOS-IC over most of the pixels. In terms of &tau;, SMOS-IC &tau; was found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the Amazonian basin and of the northern mid-latitudes.


2021 ◽  
Vol 13 (13) ◽  
pp. 2554
Author(s):  
David K. Swanson

Daily Normalized Difference Vegetation Index (NDVI) values from the MODIS Aqua and Terra satellites were compared with on-the-ground camera observations at five locations in northern Alaska. Over half of the spring rise in NDVI was due to the transition from the snow-covered landscape to the snow-free surface prior to the deciduous leaf-out. In the fall after the green season, NDVI fluctuated between an intermediate level representing senesced vegetation and lower values representing clouds and intermittent snow, and then dropped to constant low levels after establishment of the permanent winter snow cover. The NDVI value of snow-free surfaces after fall leaf senescence was estimated from multi-year data using a 90th percentile smoothing spline curve fit to a plot of daily NDVI values vs. ordinal date. This curve typically showed a flat region of intermediate NDVI values in the fall that represent cloud- and snow-free days with senesced vegetation. This “fall plateau” was readily identified in a large systematic sample of MODIS NDVI values across the study area, in typical tundra, shrub, and boreal forest environments. The NDVI level of the fall plateau can be extrapolated to the spring rising leg of the annual NDVI curve to approximate the true start of green season.


2021 ◽  
Vol 13 (5) ◽  
pp. 907
Author(s):  
Theodora Lendzioch ◽  
Jakub Langhammer ◽  
Lukáš Vlček ◽  
Robert Minařík

One of the best preconditions for the sufficient monitoring of peat bog ecosystems is the collection, processing, and analysis of unique spatial data to understand peat bog dynamics. Over two seasons, we sampled groundwater level (GWL) and soil moisture (SM) ground truth data at two diverse locations at the Rokytka Peat bog within the Sumava Mountains, Czechia. These data served as reference data and were modeled with a suite of potential variables derived from digital surface models (DSMs) and RGB, multispectral, and thermal orthoimages reflecting topomorphometry, vegetation, and surface temperature information generated from drone mapping. We used 34 predictors to feed the random forest (RF) algorithm. The predictor selection, hyperparameter tuning, and performance assessment were performed with the target-oriented leave-location-out (LLO) spatial cross-validation (CV) strategy combined with forward feature selection (FFS) to avoid overfitting and to predict on unknown locations. The spatial CV performance statistics showed low (R2 = 0.12) to high (R2 = 0.78) model predictions. The predictor importance was used for model interpretation, where temperature had strong impact on GWL and SM, and we found significant contributions of other predictors, such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Index (NDI), Enhanced Red-Green-Blue Vegetation Index (ERGBVE), Shape Index (SHP), Green Leaf Index (GLI), Brightness Index (BI), Coloration Index (CI), Redness Index (RI), Primary Colours Hue Index (HI), Overall Hue Index (HUE), SAGA Wetness Index (TWI), Plan Curvature (PlnCurv), Topographic Position Index (TPI), and Vector Ruggedness Measure (VRM). Additionally, we estimated the area of applicability (AOA) by presenting maps where the prediction model yielded high-quality results and where predictions were highly uncertain because machine learning (ML) models make predictions far beyond sampling locations without sampling data with no knowledge about these environments. The AOA method is well suited and unique for planning and decision-making about the best sampling strategy, most notably with limited data.


2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


2012 ◽  
Vol 131 (6) ◽  
pp. 716-721 ◽  
Author(s):  
Shahnoza Hazratkulova ◽  
Ram C. Sharma ◽  
Safar Alikulov ◽  
Sarvar Islomov ◽  
Tulkin Yuldashev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document