scholarly journals Applying Quantum Optimization Algorithms for Linear Programming

Author(s):  
Mert Side ◽  
Volkan Erol

Quantum computers are machines that are designed to use quantum mechanics in order to improve upon classical computers by running quantum algorithms. One of the main applications of quantum computing is solving optimization problems. For addressing optimization problems we can use linear programming. Linear programming is a method to obtain the best possible outcome in a special case of mathematical programming. Application areas of this problem consist of resource allocation, production scheduling, parameter estimation, etc. In our study, we looked at the duality of resource allocation problems. First, we chose a real world optimization problem and looked at its solution with linear programming. Then, we restudied this problem with a quantum algorithm in order to understand whether if there is a speedup of the solution. The improvement in computation is analysed and some interesting results are reported.

Author(s):  
Mert Side ◽  
Volkan Erol

Quantum computers are machines that are designed to use quantum mechanics in order to improve upon classical computers by running quantum algorithms. One of the main applications of quantum computing is solving optimization problems. For addressing optimization problems we can use linear programming. Linear programming is a method to obtain the best possible outcome in a special case of mathematical programming. Application areas of this problem consist of resource allocation, production scheduling, parameter estimation, etc. In our study, we looked at the duality of resource allocation problems. First, we chose a real world optimization problem and looked at its solution with linear programming. Then, we restudied this problem with a quantum algorithm in order to understand whether if there is a speedup of the solution. The improvement in computation is analysed and some interesting results are reported.


Author(s):  
Mert Side ◽  
Volkan Erol

Quantum computers are machines that are designed to use quantum mechanics in order to improve upon classical computers by running quantum algorithms. One of the main applications of quantum computing is solving optimization problems. For addressing optimization problems we can use linear programming. Linear programming is a method to obtain the best possible outcome in a special case of mathematical programming. Application areas of this problem consist of resource allocation, production scheduling, parameter estimation, etc. In our study, we looked at the duality of resource allocation problems. First, we chose a real world optimization problem and looked at its solution with linear programming. Then, we restudied this problem with a quantum algorithm in order to understand whether if there is a speedup of the solution. The improvement in computation is analysed and some interesting results are reported.


Author(s):  
Volkan Erol ◽  
Mert Side

Quantum computers are machines that are designed to use quantum mechanics in order to improve upon classical computers by running quantum algorithms. One of the main applications of quantum computing is solving optimization problems. For addressing optimization problems, we can use linear programming. Linear programming is a method to obtain the best possible outcome in a special case of mathematical programming. Application areas of this problem consist of resource allocation, production scheduling, parameter estimation, etc. In our study, we look at quantum speedup ratios of HHL Algorithm for different scenarios of linear programming. In a first scenario we look quantum speedup ratio (S(N)) as a function of phase transition and the ratio (κ) between the greatest and smallest eigenvalues of the matrix in linear equation system. As a second scenario, we investigate the changes in S(N) as a function of κ and s, which is the coefficient for defining the matrix as s-sparse.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 479
Author(s):  
Daniel J. Egger ◽  
Jakub Mareček ◽  
Stefan Woerner

There is an increasing interest in quantum algorithms for problems of integer programming and combinatorial optimization. Classical solvers for such problems employ relaxations, which replace binary variables with continuous ones, for instance in the form of higher-dimensional matrix-valued problems (semidefinite programming). Under the Unique Games Conjecture, these relaxations often provide the best performance ratios available classically in polynomial time. Here, we discuss how to warm-start quantum optimization with an initial state corresponding to the solution of a relaxation of a combinatorial optimization problem and how to analyze properties of the associated quantum algorithms. In particular, this allows the quantum algorithm to inherit the performance guarantees of the classical algorithm. We illustrate this in the context of portfolio optimization, where our results indicate that warm-starting the Quantum Approximate Optimization Algorithm (QAOA) is particularly beneficial at low depth. Likewise, Recursive QAOA for MAXCUT problems shows a systematic increase in the size of the obtained cut for fully connected graphs with random weights, when Goemans-Williamson randomized rounding is utilized in a warm start. It is straightforward to apply the same ideas to other randomized-rounding schemes and optimization problems.


Author(s):  
Giovanni Acampora ◽  
Roberto Schiattarella

AbstractQuantum computers have become reality thanks to the effort of some majors in developing innovative technologies that enable the usage of quantum effects in computation, so as to pave the way towards the design of efficient quantum algorithms to use in different applications domains, from finance and chemistry to artificial and computational intelligence. However, there are still some technological limitations that do not allow a correct design of quantum algorithms, compromising the achievement of the so-called quantum advantage. Specifically, a major limitation in the design of a quantum algorithm is related to its proper mapping to a specific quantum processor so that the underlying physical constraints are satisfied. This hard problem, known as circuit mapping, is a critical task to face in quantum world, and it needs to be efficiently addressed to allow quantum computers to work correctly and productively. In order to bridge above gap, this paper introduces a very first circuit mapping approach based on deep neural networks, which opens a completely new scenario in which the correct execution of quantum algorithms is supported by classical machine learning techniques. As shown in experimental section, the proposed approach speeds up current state-of-the-art mapping algorithms when used on 5-qubits IBM Q processors, maintaining suitable mapping accuracy.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989834
Author(s):  
Na Wang ◽  
Yaping Fu ◽  
Hongfeng Wang

With the wide application of advanced information technology and intelligent equipment in the manufacturing system, the decisions of design and operation have become more interdependent and their integration optimization has gained great concerns from the community of operational research recently. This article investigates an optimization problem of integrating dynamic resource allocation and production schedule in a parallel machine environment. A meta-heuristic algorithm, in which heuristic-based partition, genetic-based sampling, promising index calculation, and backtracking strategies are employed, is proposed for solving the investigated integration problem in order to minimize the makespan of the manufacturing system. The experimental results on a set of random-generated test instances indicate that the presented model is effective and the proposed algorithm exhibits the satisfactory performance that outperforms two state-of-the-art algorithms from literature.


2007 ◽  
Vol 7 (1&2) ◽  
pp. 83-92
Author(s):  
R. Schutzhold ◽  
W.G. Unruh

The fastest quantum algorithms (for the solution of classical computational tasks) known so far are basically variations of the hidden subgroup problem with {$f(U[x])=f(x)$}. Following a discussion regarding which tasks might be solved efficiently by quantum computers, it will be demonstrated by means of a simple example, that the detection of more general hidden (two-point) symmetries {$V\{f(x),f(U[x])\}=0$} by a quantum algorithm can also admit an exponential speed-up. E.g., one member of this class of symmetries {$V\{f(x),f(U[x])\}=0$} is discrete self-similarity (or discrete scale invariance).


Author(s):  
A.P. CHERENKOV ◽  
V.V. MIKHAILENKO ◽  
B.S. SHUSTERMAN

This paper is devoted to the determination of parameter values of optimization problems for which they are solvable. In relation to this, the concept of monotone solvability with respect to parameter is essentially used. The procedure of construction of solvability boundaries in parameter space is realized, and it is essentially reduced to decipher the monotone function. This procedure is used for the consideration of a dynamic model of simulative control of the geological-prospecting process (the resource allocation between stages of geological-prospecting work). On the basis of this procedure using the standard package of linear programming, the complex program of decision-making for personal computers compatible with IBM XT/AT is implemented.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 502
Author(s):  
Benjamin Zanger ◽  
Christian B. Mendl ◽  
Martin Schulz ◽  
Martin Schreiber

Identifying computational tasks suitable for (future) quantum computers is an active field of research. Here we explore utilizing quantum computers for the purpose of solving differential equations. We consider two approaches: (i) basis encoding and fixed-point arithmetic on a digital quantum computer, and (ii) representing and solving high-order Runge-Kutta methods as optimization problems on quantum annealers. As realizations applied to two-dimensional linear ordinary differential equations, we devise and simulate corresponding digital quantum circuits, and implement and run a 6th order Gauss-Legendre collocation method on a D-Wave 2000Q system, showing good agreement with the reference solution. We find that the quantum annealing approach exhibits the largest potential for high-order implicit integration methods. As promising future scenario, the digital arithmetic method could be employed as an "oracle" within quantum search algorithms for inverse problems.


Sign in / Sign up

Export Citation Format

Share Document