scholarly journals Phosphate Detection in Hydroponics using Molecularly Imprinted Polymer Sensors

Author(s):  
Christopher S. Storer ◽  
Zachary Coldrick ◽  
Daniel Tate ◽  
Jack Marsden Donoghue ◽  
Bruce Grieve

An interdigitated electrode sensor was designed and microfabricated for measuring the changes in the capacitance of three phosphate selective molecularly imprinted polymer (MIP) formulations, in order to provide hydroponics users with a portable nutrient sensing tool. The MIPs investigated were synthesised using different combinations of the functional monomers methacrylic acid (MAA) and N-allylthiourea, against the template molecules diphenyl phosphate, triethyl phosphate and trimethyl phosphate. A cross-interference study between phosphate, nitrate and sulfate was carried out for the MIP materials using an inductance, capacitance and resistance (LCR) meter. Capacitance measurements were taken applying an alternating current (AC) with a potential difference of 1 V root mean square (RMS) at a frequency of 1 kHz. The cross-interference study demonstrated a strong binding preference to phosphate over the other nutrient salts tested for each formulation. The size of template molecule and length of the functional monomer side groups also determined that a combination of a short chain functional monomer in combination with a template containing large R-groups produced the optimal binding site conditions when synthesising a phosphate selective MIP.

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
S. Mamman ◽  
F. B. M. Suah ◽  
M. Raaov ◽  
F. S. Mehamod ◽  
S. Asman ◽  
...  

In this study, a unique magnetic molecularly imprinted polymer (MMIP) adsorbent towards bisphenol A (BPA) as a template molecule was developed by bulk polymerization using β-cyclodextrin (β-CD) as a co-monomer with methacrylic acid (MAA) to form MMIP MAA–βCD as a new adsorbent. β-CD was hybridized with MAA to obtain water-compactible imprinting sites for the effective removal of BPA from aqueous samples. Benzoyl peroxide and trimethylolpropane trimethacrylate were used as the initiator and cross-linker, respectively. The adsorbents were characterized by Fourier transform infrared spectroscopy, scanning electronic microscopy, transmission electron microscopy, vibrating sample magnetometer, Brunauer–Emmett–Teller and X-ray diffraction. 1 H nuclear magnetic resonance spectroscopy was used to characterize the MAA–βCD and BPA–MAA–βCD complex. Several parameters influencing the adsorption efficiency of BPA such as adsorbent dosage, pH of sample solution, contact time, initial concentrations and temperature as well as selectivity and reusability study have been evaluated. MMIP MAA–βCD showed significantly higher removal efficiency and selective binding capacity towards BPA compared to MMIP MAA owing to its unique morphology with the presence of β-CD. The kinetics data can be well described by the pseudo second-order kinetic and Freundlich isotherm and Halsey models best fitted the isotherm data. The thermodynamic studies indicated that the adsorption reaction was a spontaneous and exothermic process. Therefore, MMIP based on the hybrid monomer of MAA–βCD shows good potential of a new monomer in molecularly imprinted polymer preparation and can be used as an effective adsorbent for the removal of BPA from aqueous solutions.


2014 ◽  
Vol 605 ◽  
pp. 67-70 ◽  
Author(s):  
Mohsen Rahiminezhad ◽  
Seyed Jamaleddin Shahtaheri ◽  
Mohammad Reza Ganjali ◽  
Abbas Rahimi Rahimi Forushani

Molecular imprinting technology has become an interesting research area to the preparation of specific sorbent material for environmental and occupational sample preparation techniques (1). In the molecular imprinting technology, specific binding sites have been formed in polymeric matrix, which often have an affinity and selectivity similar to antibody-antigen systems (2). In molecular imprinted technology, functional monomers are arranged in a complementary configuration around a template molecule, then, cross-linker and solvent are also added and the mixture is treated to give a porous material containing nono-sized binding sites. After extraction of the template molecule by washing, vacant imprinted sites will be left in polymer, which are available for rebinding of the template or its structural analogue (3). The stability, convention of preparation and low cost of these materials make them particularly attractive (4). These synthetic materials have been used for capillary electrochromatography (5), chromatography columns (6), sensors (7), and catalyze system (8). Depending on the molecular imprinting approach, different experimental variables such as the type and amounts of functional monomers, porogenic solvent, initiator, monomer to cross-linker ratio, temperature, and etc may alter the properties of the final polymeric materials. In this work, chemometric approach based on Central Composite Design (CCD) was used to design the experiments as well as to find the optimum conditions for preparing appropriate diazinon molecularly imprinted polymer.


Water SA ◽  
2018 ◽  
Vol 44 (3 July) ◽  
Author(s):  
Lawrence Mzukisi Madikizela ◽  
Silindile Senamile Zunngu ◽  
Nomchenge Yamkelani Mlunguza ◽  
Nikita Tawanda Tavengwa ◽  
Phumlane Selby Mdluli ◽  
...  

A molecularly imprinted polymer (MIP) that is selective to ketoprofen was synthesized and applied in the adsorption of the target compound from water. The MIP was synthesized using a bulk polymerization method at high temperatures (60–80°C), where ketoprofen, 2-vinylpyridine, ethylene glycol dimethacrylate, toluene and 1,1´-azobis(cyclohexanecarbonitrile) were used as template, functional monomer, cross-linker, porogen and initiator, respectively. Non-imprinted polymer (NIP) was synthesized similarly to the MIP but in the absence of ketoprofen. From molecular dynamics simulation, the nature of interactions that occurred between the template and the functional monomer were found to be based on hydrogen bonding. This was confirmed experimentally, where a high extraction efficiency of ≥ 90% was obtained at acidic conditions (pH 5) due to the protonation of ketoprofen. A contact time of 45 min was sufficient for the maximum adsorption of ketoprofen from 10 mL spiked water using 8 mg of the adsorbent. MIP showed greater selectivity than NIP by achieving a relative selectivity coefficient of 7.7 towards ketoprofen in the presence of structurally related pharmaceuticals. Furthermore, the order of sorption onto the MIPs from water was ketoprofen > fenoprofen > gemfibrozil. From a modelling perspective, the Langmuir adsorption isotherm and pseudo-second-order kinetic model gave the best fit, with maximum adsorption capacity of 8.24 mg·g−1 and sorption rate constant of 0.25 mg·g−1·min−1 for MIP. This was translated to chemisorption of ketoprofen onto the homogeneous MIP binding sites. This work demonstrated the great potential of MIP in selective recognition of ketoprofen from wastewater relative to closely related compounds.


2020 ◽  
Vol 12 (47) ◽  
pp. 5729-5736
Author(s):  
Simone Cavalera ◽  
Fabio Di Nardo ◽  
Giulia Spano ◽  
Laura Anfossi ◽  
Panagiotis Manesiotis ◽  
...  

A selective molecularly imprinted polymer prepared with a squaramide-based functional monomer was used for the solid phase extraction of roxarsone from surface waters.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yujie Huang ◽  
Qiujin Zhu

This paper theoretically investigates interactions between a template and functional monomer required for synthesizing an efficient molecularly imprinted polymer (MIP). We employed density functional theory (DFT) to compute geometry, single-point energy, and binding energy (ΔE) of an MIP system, where spermidine (SPD) and methacrylic acid (MAA) were selected as template and functional monomer, respectively. The geometry was calculated by using B3LYP method with 6-31+(d) basis set. Furthermore, 6-311++(d, p) basis set was used to compute the single-point energy of the above geometry. The optimized geometries at different template to functional monomer molar ratios, mode of bonding between template and functional monomer, changes in charge on natural bond orbital (NBO), and binding energy were analyzed. The simulation results show that SPD and MAA form a stable complex via hydrogen bonding. At 1 : 5 SPD to MAA ratio, the binding energy is minimum, while the amount of transferred charge between the molecules is maximum; SPD and MAA form a stable complex at 1 : 5 molar ratio through six hydrogen bonds. Optimizing structure of template-functional monomer complex, through computational modeling prior synthesis, significantly contributes towards choosing a suitable pair of template-functional monomer that yields an efficient MIP with high specificity and selectivity.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94997-95006 ◽  
Author(s):  
Shaomei Zeng ◽  
Yongxin She ◽  
Bining Jiao ◽  
Guangyang Liu ◽  
Jing Wang ◽  
...  

A class-specific molecularly imprinted polymer (MIP) for selectively extracting four tropane alkaloids has been prepared using anisodine, methacrylic, and trimethylolpropane trimethacrylate as template, functional monomer and crosslinker, respectively.


2014 ◽  
Vol 6 (23) ◽  
pp. 9483-9489 ◽  
Author(s):  
Xiao Zhang ◽  
Feng Shen ◽  
Zhe Zhang ◽  
Yue Xing ◽  
Xueqin Ren

A new bifunctional monomer acting as both a cross-linker and a functional monomer was synthesized and applied in the preparation of water-compatible naproxen sodium imprinted polymers.


Sign in / Sign up

Export Citation Format

Share Document