scholarly journals Facile Syntheses and Molecular-Docking of Novel Substituted 3,4-Dimethyl-1H-pyrrole-2-carboxamide/carbohydrazide Analogues with Antimicrobial and Antifungal Properties

Author(s):  
Jitendra D. Bhosale ◽  
Rajesh Dabur ◽  
Gopal P. Jadhav ◽  
R. S. Bendre

The article describes facile one-pot, hi-yielding reactions to synthesize substituted 3,4-dimethyl-1H-pyrrole-2-carboxamide (3a–m) and carbohydrazide analogues (5a–l) as potential antifungal and antimicrobial agents. The structural integrity and purity of the synthesized compounds were assigned based on appropriate spectroscopic techniques. Synthesized compounds were assessed in vitro for antifungal and antibacterial activity. The compound 5h, 5i and 5j were found to be the most potent against A. fumigatus, with MIC value of 0.031 mg/mL. The compound 5f bearing a 2,6-dichloro group on the phenyl ring was found to be the most active broad spectrum antibacterial agent with MIC value of 0.039 mg/mL. The mode of action of the most promising antifungal compounds (one representative from each series; 3j and 5h) was established by their molecular docking to the active site of sterol 14α-demethylase. Molecular docking studies revealed a highly spontaneous binding ability of the tested compounds in the access channel away from catalytic heme iron of the enzyme, which suggested that the tested compounds inhibit this enzyme and would avoid heme iron related deleterious side effects observed with existing antifungal compounds.

2022 ◽  
Author(s):  
Mohammed CHALKHA ◽  
Mohamed Akhazzane ◽  
Fatima Zahrae Moussaid ◽  
Ossama Daoui ◽  
Asmae Nakkabi ◽  
...  

In this work, we report the synthesis of some new pyrazole derivatives via an efficient and practical procedure. The structures of the obtained compounds were established using different spectroscopic techniques...


2019 ◽  
Vol 15 (7) ◽  
pp. 813-832 ◽  
Author(s):  
Sunil Harer ◽  
Manish Bhatia ◽  
Vikram Kawade

Background: Dihydrofolate reductase is one of the important enzymes for thymidylate and purine synthesis in micro-organisms. A large number of drugs have been designed to inhibit microbial DHFR but over the period of time, some drugs have developed resistance and cross reactivity towards the enzyme. Over the past few decades, benzimidazoles, triazoles and their derivatives have been grabbing the attention of the synthetic chemists for their wide gamut of antibacterial and antifungal activities targeting microbial protein DHFR. Objective: Our goal behind present investigation is to explore benzimidazoles class of drugs as microbial DHFR inhibitors by studying ligand-receptor binding interactions, in vitro enzyme inhibition assay and confirmation of anti-microbial activity against selected pathogenic microorganisms. Methods: A library containing thirty novel 2,6-disubstituted 1H-benzimidazoles was synthesized by one pot condensation of o-nitro aniline or 2,4-dinitro aniline with series of aldehydes or acetophenones using Na2S2O4 or SnCl2 respectively and reflux for 5-6hr. Structures of compounds have been confirmed by spectroscopic methods as 1H and 13C NMR, FT-IR and MS. In vitro DHFR inhibition study was performed by using Epoch microplate reader and IC50 of the test compounds was compared with Trimethoprim. In vitro antimicrobial activity was performed against selected clinical pathogens by agar disk diffusion method and MIC (µg/mL) was reported. Results: Moderate to good level of DHFR inhibition was observed with IC50 values in the range of 7-23 µM. Compounds B1, B19, B22, B24 and B30 expressed 1.1 to 1.4 folds more prominent DHFR inhibitory activity as compared to standard Trimethoprim. Remarkable antimicrobial activity was exhibited by B1, B19, B22, B24 and B30. Molecular docking study revealed perfect binding of test ligands with key amino acids of DHFR as Phe31, Ile94, Ile5, Asp27, Gln32 and Phe36. Conclusion: Nature of 1H-benzimidazole substituents at position 2 and 6 had influence over magnitude and type of molecular binding and variation in the biological activity. The present series of 1H-benzimidazoles could be considered promising broad-spectrum antimicrobial candidates that deserve in future for preclinical antimicrobial evaluation and development of newer antimicrobial agents targeting microbial DHFR.


2019 ◽  
Vol 19 (6) ◽  
pp. 527-538 ◽  
Author(s):  
Fathy M. Abdelrazek ◽  
Sobhi M. Gomha ◽  
Mohamed E.B. Shaaban ◽  
Kamal A. Rabee ◽  
Heba N. El-Shemy ◽  
...  

Background: Thiazoles and pyridines are versatile synthetic scaffolds possessing wide spectrum of biological effects including potential antimicrobial activity. Objective: In the efforts to develop suitable antimicrobia drugs, medicinal chemists have focused on thiazole derivatives. A novel series of 2-thiazolyl pyridines was prepared in a one-pot three-component reaction using 2-bromoacetyl pyridine as a starting precursor. Method: Structure of the synthesized compounds was elucidated by spectral data (FT-IR, 1H NMR, 13C NMR, and mass) and elemental analyses. The prepared compounds were screened for their in vitro antimicrobial activity. Results: The results revealed that compounds 4a,b,e-g and 12 showed promising activity. Molecular docking studies using MOE software were carried out for compounds 4a and 4b which exhibited potent activities indicated by the diameter zones (4a; 3.6, 4.0, 1.2 mm) (4b; 4.2, 3.5, 1.5 mm) and the binding affinities (4a; -5.7731, -5.3576, -4.6844 kcal mol-1) (4b; -5.9356, -2.8250, -5.3628 kcal mol-1) against Candida albicans, Bacillus subtilis and Escherichia coli, respectively. Conclusion: This paper describes a facile and efficient MCR for synthesis of 2-thiazolyl pyridines from reaction of 2-bromoacetyl pyridine with different reagents. There was an agreement between the values of binding affinities and interactions and the data obtained from the practical antimicrobial screening of the tested compounds.


2020 ◽  
Vol 13 (3) ◽  
pp. 233-244
Author(s):  
Amelia Nathania Dong ◽  
Nafees Ahemad ◽  
Yan Pan ◽  
Uma Devi Palanisamy ◽  
Beow Chin Yiap ◽  
...  

Background: There is a large inter-individual variation in cytochrome P450 2C19 (CYP2C19) activity. The variability can be caused by the genetic polymorphism of CYP2C19 gene. This study aimed to investigate the molecular and kinetics basis for activity changes in three alleles including CYP2C19*23, CYP2C19*24 and CYP2C19*25found in the Chinese population. Methods: The three variants expressed by bacteria were investigated using substrate (omeprazole and 3- cyano-7-ethoxycoumarin[CEC]) and inhibitor (ketoconazole, fluoxetine, sertraline and loratadine) probes in enzyme assays along with molecular docking. Results: All alleles exhibited very low enzyme activity and affinity towards omeprazole and CEC (6.1% or less in intrinsic clearance). The inhibition studies with the four inhibitors, however, suggested that mutations in different variants have a tendency to cause enhanced binding (reduced IC50 values). The enhanced binding could partially be explained by the lower polar solvent accessible surface area of the inhibitors relative to the substrates. Molecular docking indicated that G91R, R335Q and F448L, the unique mutations in the alleles, have caused slight alteration in the substrate access channel morphology and a more compact active site cavity hence affecting ligand access and binding. It is likely that these structural alterations in CYP2C19 proteins have caused ligand-specific alteration in catalytic and inhibitory specificities as observed in the in vitro assays. Conclusion: This study indicates that CYP2C19 variant selectivity for ligands was not solely governed by mutation-induced modifications in the active site architecture, but the intrinsic properties of the probe compounds also played a vital role.


2015 ◽  
Vol 10 (4) ◽  
pp. 917 ◽  
Author(s):  
Mukesh Kumar Kumawat ◽  
Dipak Chetia

<p class="Abstract">Seven novel dispiro-1,2,4,5-tetraoxane derivatives were synthesized and characterized by a number of analytical and spectroscopic techniques. The molecules were subsequently screened for in vitro antimalarial activity against chloroquine resistant strain of <em>Plasmodium falciparum</em> (RKL-9). At antimalarial activity screening, two compounds, namely 5d (MIC = 15.6 µg/mL or 64.5 µM) and 5f (MIC = 15.6 µg/mL or 54.6 µM) were found to be about 1.5 times more potent against chloroquine resistant strain-RKL-9 compared to chloroquine (MIC = 25.0 µg/mL or 78.3 µM). Molecular docking studies of potent ligands were also performed in cysteine protease binding pocket residues of falcipain-2 as a target protein.</p><p> </p>


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Saundane Anand Raghunath ◽  
Kirankumar Nandibeoor Mathada

An efficient one pot condensation of naphthols (1), 2,5-disubstituted indole-3-carboxaldehydes (2), and secondary amines (3) has been achieved using dichloromethane as a solvent, stirring at room temperature. Some of the new [(disubstituted amino)(5-substituted 2-phenyl-1H-indol-3-yl)methyl]naphthalene-ols (4) derivatives were prepared in good yields. The significant features of this method are simple work-up procedure, inexpensive nontoxic solvent, shorter reaction times, and excellent product yields. The structures of newly synthesized compounds (4a–r) are confirmed by their elemental analysis, FTIR, 1H and 13C NMR, and mass spectral data. These compounds were screened for their in vitro antioxidant, antimicrobial, antitubercular, and anticancer activities. Among the synthesized compounds (4a–r), the compound 4e exhibited highest activity for radical scavenging and ferric ions reducing antioxidant power activities; compounds 4b, 4h, and 4k showed good metal chelating activity. Compounds 4n and 4q showed excellent antimicrobial activities with MIC value 08 µg/mL against tested strains. Compounds 4h, 4k, 4n, and 4q exhibited promising antitubercular activity with MIC value 12.5 µg/mL. Compounds 4k and 4q exhibited 100% cell lysis at concentration 10 µg/mL against MDA-MB-231 (human adenocarcinoma mammary gland) cell lines.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Vineet Kumar Choudhary ◽  
Abhishek Kumar ◽  
Neeraj Sharma

AbstractThe new diorganotin(IV) complexes of composition [Me2Sn(C6H5OCH2CONHO)2](I) and [n-Bu2Sn(C6H5OCH2CONHO)2](II) have been synthesized by the reactions of Me2SnCl2andn-Bu2SnCl2with potassium phenoxyacetohydroxamate (PhOAHK=C6H5OCH2CONHOK) in 1:2 molar ratio in methanol and benzene solvent medium and characterized by elemental analyses and spectroscopic techniques (infrared,1H nuclear magnetic resonance and mass spectrometry). The [O,O coordination] through carbonyl and hydroxamic oxygen atoms and distorted octahedral geometry around the mononuclear tin has been inferred. The electrochemical behavior of complexes studied by the cyclic voltammetric technique has shown quasi-irreversible two-step reduction from tin (IV) to tin (II). Thermal behavior of complexes studied by the thermogravimetric technique in N2atmosphere has yielded SnO as the decomposition product. Thein vitroantimicrobial activity assays against various pathogenic Gram-negative bacteria, namely,Salmonella typhi,Escherichia coli; Gram-positiveBacillus cereusandStaphylococcus aureusand fungiAspergillus nigerandAlternaria alternataby the minimum inhibitory concentration method have shown their potential as promising antimicrobial agents compared to the respective standard chloramphenicol and nystatin drugs.


Author(s):  
Sushmitha Bujji ◽  
Praveen Kumar E ◽  
Sree Kanth Sivan ◽  
Manjunatha DH ◽  
Subhashini N.J.P.

Background: Cancer disease is making a serious concern globally. Global cancer occurrence is steadily increasing every year. There is always a persistent need to develop new anticancer drugs with reduced side effects or act synergistically with the existing chemotherapeutics. Objective: Benzoxazoles are fused bicyclic nitrogen and oxygen-containing heterocyclic compounds and are considered biologically privileged scaffolds. We designed a synthetic route to link the benzoxazoles with oxadiazoles resulting in a better pharmacophore for anticancer activity. Methods: A series of novel amide derivatives of benzoxazole linked 1,3,4-oxadiazoles (10a-j) were synthesized and characterized by 1H NMR, 13C NMR, and mass spectroscopic techniques. The biological properties of the compounds were screened in vitro against four different tumor cell lines. Results: The results suggest that the compound 10b having 3,4,5-trimethoxy substitution on the phenyl ring exhibited potent anticancer activity in three cell lines (A549 = 0.13 ± 0.014 µM, MCF-7 = 0.10 ± 0.013 µM and HT-29 = 0.22 ± 0.017 µM). Notably, among the synthesized derivatives, compounds 10b, 10c, 10f, 10g, and 10i exhibited potent anticancer activity than the control IC50 in the range of 0.11 ± 0.02 to 0.93 ± 0.034 µM. Molecular docking simulation results showed compounds were stabilized by hydrogen bond and π-π interactions with the protein. Conclusion: The molecules showed comparable binding affinities with standard Combretastatin-A4. The present research work is preliminary and needs further studies to take the synthesized compounds to the next level in the cancer research field.


Author(s):  
Zohor Mohammad Mahdi Alzhrani ◽  
Mohammad Mahboob Alam ◽  
Syed Nazreen

Background: The frequent uses of antimicrobial agents to treat infections in diabetic patients make them more drug resistance than non diabetic patients which accounts for higher mortality rate of diabetic patients. Therefore, it is a necessity today to synthesize new drugs with dual mode of action as antidiabetic and antibacterial agents. In the present work, new derivatives containing thiazolidinedione and 1,3,4-oxadiaozle have been synthesized and screened for PPAR-γ and antibacterial activities. Methods: Compound 5-12 have been synthesized from 2-methoxy benzaldehyde and thiazolidinedione and characterized using different spectroscopic techniques such as IR, NMR and mass spectrometry. These compounds were tested for in vitro PPAR-γ transactivation, PPAR-γ gene expression and antibacterial activities. Finally molecular docking was carried out to see the binding interactions of molecules with the target protein. Results: All the compounds follow Lipinski rule suggesting the synthesized derivatives have good drug likeness properties. Compound 11 and 12 exhibited promising PPAR-γ transactivation with 73.69% and 76.50%, respectively as well as showed significant antibacterial activity with comparable MIC of 3.12 μg/disc to standard drug amoxicillin. The docking result was found to be in consistent with the in vitro PPAR-γ transactivation results. Conclusion: Compounds 11 and 12 can be further investigated as lead molecules for the development of new and effective antidiabetic and antibacterial agents.


Sign in / Sign up

Export Citation Format

Share Document