scholarly journals Axial Compression Model for FRP Confined Concrete in Elliptical Cross Sections

Author(s):  
Zhenyu Wang ◽  
Haytham F. Isleem

Most of the existing studies conducted on FRP-confined concrete considered circular and square concrete columns, while limited studies were on columns with rectangular sections. The studies have confirmed that the circular cross-sections exhibited higher confinement effectiveness, whereas in the case of non-circular cross-sections the efficiency of FRP confinement decreases with an increase of the sectional aspect ratio and there is no significant increase, particularly for columns with the aspect ratio of 2.0. As recently suggested by the researchers, to significantly increase the effectiveness of FRP-confinement for these columns is by modifying a rectangular section to an elliptical or oval section. According to the literature, most of the existing confinement models for FRP-confined concrete under axial compression have been proposed for columns with circular and rectangular cross-sections. However, modeling the axial strength and strain of concrete confined with FRP in elliptical cross-sections under compression is most limited. Therefore, this paper provides new expressions based on limited experimental data available in the literature. For a sufficient amount of FRP-confinement, the threshold value was proposed to be 0.02. Finally, the accuracy of the proposed model was verified by comparing its predictions with the same test database, together with those from the existing models.

Author(s):  
Haytham F. A. Isleem

Most of the existing studies conducted on FRP-confined concrete considered circular and square concrete columns, while limited studies were on columns with rectangular sections. The studies have confirmed that the circular cross-sections exhibited higher confinement effectiveness, whereas in the case of non-circular cross-sections the efficiency of FRP confinement decreases with an increase of the sectional aspect ratio and there is no significant increase, particularly for columns with the aspect ratio of 2.0. As recently suggested by the researchers, to significantly increase the effectiveness of FRP-confinement for these columns is by modifying a rectangular section to an elliptical or oval section. According to the literature, most of the existing confinement models for FRP-confined concrete under axial compression have been proposed for columns with circular and rectangular cross-sections. However, modeling the axial strength and strain of concrete confined with FRP in elliptical cross-sections under compression is most limited. Therefore, this paper provides new expressions based on limited experimental data available in the literature. For a sufficient amount of FRP-confinement, the threshold value was proposed to be 0.02. Finally, the accuracy of the proposed model was verified by comparing its predictions with the same test database, together with those from the existing models.


Author(s):  
Zhenyu Wang ◽  
Haytham F. Isleem

Most of the existing studies conducted on FRP-confined concrete considered circular and square concrete columns, while limited studies were on columns with rectangular sections. The studies have confirmed that the circular cross-sections exhibited higher confinement effectiveness, whereas in the case of non-circular cross-sections the efficiency of FRP confinement decreases with an increase of the sectional aspect ratio and there is no significant increase, particularly for columns with the aspect ratio of 2.0. As recently suggested by the researchers, to significantly increase the effectiveness of FRP-confinement for these columns is by modifying a rectangular section to an elliptical or oval section. According to the literature, most of the existing confinement models for FRP-confined concrete under axial compression have been proposed for columns with circular and rectangular cross-sections. However, modeling the axial strength and strain of concrete confined with FRP in elliptical cross-sections under compression is most limited. Therefore, this paper provides new expressions based on limited experimental data available in the literature. For a sufficient amount of FRP-confinement, the threshold value was proposed to be 0.02. Finally, the accuracy of the proposed model was verified by comparing its predictions with the same test database, together with those from the existing models.


2018 ◽  
Vol 2 (4) ◽  
pp. 67 ◽  
Author(s):  
Haytham Isleem ◽  
Zhenyu Wang

Most existing studies conducted on fiber-reinforced polymer (FRP)-confined concrete have considered circular and square concrete columns, while limited studies have considered columns with rectangular sections. Studies have confirmed that the circular cross-sections exhibited higher confinement effectiveness, whereas in the case of non-circular cross-sections the efficiency of FRP confinement decreases with an increase of the sectional aspect ratio and there is no significant increase, particularly for columns with the aspect ratio of 2.0. As recently suggested by researchers, to significantly increase the effectiveness of FRP-confinement for these columns involves changing a rectangular section into an elliptical or oval section. According to the literature, most of the existing confinement models for FRP-confined concrete under axial compression have been proposed for columns with circular and rectangular cross-sections. However, modeling of the axial strength and strain of concrete confined with FRP in elliptical cross-sections under compression is limited. Therefore, this paper provides new expressions based on limited experimental data available in the literature. For a sufficient amount of FRP-confinement, the threshold value was proposed to be 0.02. Finally, the accuracy of the proposed model was verified by comparing its predictions with the same test database, together with those from the existing models.


2011 ◽  
Vol 94-96 ◽  
pp. 1983-1988
Author(s):  
Jia Song ◽  
Zhen Bao Li ◽  
Yong Ping Xie ◽  
Xiu Li Du ◽  
Yue Gao

An experimental study was made of the mechanical properties of large scale confined concrete subjected to the axial compression test. Eleven tied concrete columns and six plain concrete prisms were tested. In the test, each specimen had the same transverse reinforcement configuration, and similar volumetric ratio of lateral steel, while different size. The test results in this paper indicate that the size of the specimen has no obvious relationship with the ultimate strength, however, it does affect the post-peak ductility to some extent. As a supplement to the experimental study, a finite element method was adopted to imitate the mechanical behavior of the confined concrete under axial compression. The results of the imitation in this paper indicate the confinement mechanism of large scale specimens.


2014 ◽  
Vol 20 (5) ◽  
pp. 632-648 ◽  
Author(s):  
Riad Benzaid ◽  
Habib-Abdelhak Mesbah

This paper presents the results of an experimental study on the behaviour of axially loaded short concrete columns, with different cross sections that have been externally strengthened with carbon fibre-reinforced polymer (CFRP) sheets. Six series, forming the total of 60 specimens, were subjected to axial compression. All the test specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. According to the obtained test results, FRP-confined specimen failure occurs before the FRP reached the ultimate strain capacities. Thus, the failure occurs prematurely and the circumferential failure strain is lower than the ultimate strain obtained from the standard tensile testing of the FRP composite. In existing models for FRP-confined concrete, it is commonly assumed that the FRP ruptures when the hoop stress in the FRP jacket reaches its tensile strength from either flat coupon tests, which is herein referred to as the FRP material tensile strength. This phenomenon considerably affects the accuracy of the existing models for FRP-confined concrete. On the basis of the effective lateral confining pressure of the composite jacket and the effective circumferential FRP failure strain, new equations were proposed to predict the strength of FRP-confined concrete and corresponding strain for each of the cross section geometry used, circular and square. The estimations given by these equations were compared with the experimental ones and general conclusions were drawn.


2020 ◽  
Vol 26 (6) ◽  
pp. 564-578
Author(s):  
Chongchi Hou ◽  
Wenzhong Zheng ◽  
Wei Chang

This paper tested the behaviour of 32 high-strength concrete columns confined by high-strength spirals under concentric compression. The test parameters included unconfined concrete compressive strength, spiral yield strength, volumetric ratio, and spiral spacing. The results showed that bulging and shear sliding were the two characteristic types of failure patterns of the thirty-two confined columns, depending on spiral spacing and concrete strength. Moreover, the spiral in most specimens did not yield at the confined concrete compressive strength. An analytical confinement model for high-strength concrete columns confined by high-strength spirals was proposed. In this proposed model, the calculated value of the spiral stress at the confined concrete compressive strength was used to calculate the feature points of the stressstrain curve. The proposed model showed good correlations with available experimental results of 64 columns.


2013 ◽  
Vol 639-640 ◽  
pp. 1069-1072
Author(s):  
Hao Xiong Feng ◽  
Wei Jian Yi

This paper describes principle and working mechanism of the steel tube confined concrete, to analyze impact factors of steel tube confined concrete strength. By the studies, presents several solutions to improve the strength of steel tube confined concrete, fully execute the behavior of steel tube and filled-in-concrete, strengthen the interactions between steel tube and filled-in-concrete to provide theoretical basis for the design and use of steel tube confined concrete.


Sign in / Sign up

Export Citation Format

Share Document