Behaviour of angle steel frame confined concrete columns under axial compression

2020 ◽  
Vol 241 ◽  
pp. 118034 ◽  
Author(s):  
Chong Rong ◽  
Qingxuan Shi
2011 ◽  
Vol 94-96 ◽  
pp. 1983-1988
Author(s):  
Jia Song ◽  
Zhen Bao Li ◽  
Yong Ping Xie ◽  
Xiu Li Du ◽  
Yue Gao

An experimental study was made of the mechanical properties of large scale confined concrete subjected to the axial compression test. Eleven tied concrete columns and six plain concrete prisms were tested. In the test, each specimen had the same transverse reinforcement configuration, and similar volumetric ratio of lateral steel, while different size. The test results in this paper indicate that the size of the specimen has no obvious relationship with the ultimate strength, however, it does affect the post-peak ductility to some extent. As a supplement to the experimental study, a finite element method was adopted to imitate the mechanical behavior of the confined concrete under axial compression. The results of the imitation in this paper indicate the confinement mechanism of large scale specimens.


2013 ◽  
Vol 639-640 ◽  
pp. 1069-1072
Author(s):  
Hao Xiong Feng ◽  
Wei Jian Yi

This paper describes principle and working mechanism of the steel tube confined concrete, to analyze impact factors of steel tube confined concrete strength. By the studies, presents several solutions to improve the strength of steel tube confined concrete, fully execute the behavior of steel tube and filled-in-concrete, strengthen the interactions between steel tube and filled-in-concrete to provide theoretical basis for the design and use of steel tube confined concrete.


2011 ◽  
Vol 243-249 ◽  
pp. 1466-1476
Author(s):  
Lin Zhu Sun ◽  
Fang Yang ◽  
Ya Gang Zhou ◽  
Zi Ling Xie

Double layer stirrup confined concrete columns use two layers of stirrup, inside and outside, to constrain the core concrete. In this paper, in order to analyze the effect of double layer stirrups on the axial compression characteristics of concrete square columns, to determine the strength and deformation characteristics of double layer stirrup confined concrete square columns, and to establish the bearing capacity calculation equation for double layer stirrup confined concrete square columns, we designed 16 specimens to conduct axial compression test, from which a series of test data were obtained for double layer stirrup confined concrete square columns. We built the bearing capacity calculation equation for double layer stirrup confined concrete components on the basis of analysis and study and compared the calculated values with the test ones, and these data fit well; therefore, the study can provide reference for design and application of double layer stirrup confined concrete square columns.


2013 ◽  
Vol 438-439 ◽  
pp. 501-504
Author(s):  
Jun Yan Lu ◽  
Wei Wang Pang ◽  
Shuai Chang

Through earthquake simulation experiment of nine regional confined concrete columns with different axial compression ratio, the bearing capacity and seismic behavior of regional confined concrete columns were studied in this paper. Considering the ductility, stiffness, energy-dissipation performance and related factors of regional confined concrete columns under different axial compression ratio, by comparative analysis of the hysteretic behavior of the specimens, the limit of axial compression ratio of regional confined concrete columns is proposed for seismic design.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 341
Author(s):  
Yang Wei ◽  
Yang Xu ◽  
Gaofei Wang ◽  
Xunyu Cheng ◽  
Guofen Li

Axial compression tests were carried out on 72 FRP (fiber reinforced polymer)–stirrup composite−confined concrete columns. Stirrups ensure the residual bearing capacity and ductility after the FRP fractures. To reduce the effect of stress concentration at the corners of the confined square−section concrete columns and improve the restraint effect, an FRP–stirrup composite−confined concrete structure with rounded corners is proposed. Different corner radii of the stirrup and outer FRP were designed, and the corner radius of the stirrup was adjusted accurately to meet the designed corner radius of the outer FRP. The cross−section of the specimens gradually changed from square to circular as the corner radius increased. The influence of the cross−sectional shape and corner radius on the compressive behaviour of FRP–stirrup composite−confined concrete was analysed. An increase in the corner radius can cause the strain distribution of the FRP to be more uniform and strengthen the restraint effect. The larger the corner radius of the specimen, the better the improvement of mechanical properties. The strength of the circular section specimen was greatly improved. In addition, the test parameters also included the FRP layers, FRP types and stirrup spacing. With the same corner radius, increasing the number of FRP layers or densifying the stirrup spacing effectively improved the mechanical properties of the specimens. Finally, a database of FRP–stirrup composite−confined concrete column test results with different corner radii was established. The general calculation models were proposed, respectively, for the peak points, ultimate points and stress–strain models that are applicable to FRP−, stirrup− and FRP–stirrup−confined concrete columns with different cross−sectional shapes under axial compression.


2010 ◽  
Vol 168-170 ◽  
pp. 2154-2157
Author(s):  
Jing Yu Chen ◽  
Ying Hai

The use of steel tube confined concrete columns has been the interests of many structural engineers. For investigation of the axially loading capacity of short concrete filled double skin tubes (CFDST) columns, axial compression loading experiments were carried on 9 short CFDST column samples. According to experimental results and with numerical analysis, an ultimate load estimation equation of CFDST column with one correction parameter is presented, the linear relation between the parameter and the inner-to-outer diameters ratio Di/Do is given out. The ultimate load estimation equation is validated by the test results of short CFDST column samples.


Author(s):  
Zhenyu Wang ◽  
Haytham F. Isleem

Most of the existing studies conducted on FRP-confined concrete considered circular and square concrete columns, while limited studies were on columns with rectangular sections. The studies have confirmed that the circular cross-sections exhibited higher confinement effectiveness, whereas in the case of non-circular cross-sections the efficiency of FRP confinement decreases with an increase of the sectional aspect ratio and there is no significant increase, particularly for columns with the aspect ratio of 2.0. As recently suggested by the researchers, to significantly increase the effectiveness of FRP-confinement for these columns is by modifying a rectangular section to an elliptical or oval section. According to the literature, most of the existing confinement models for FRP-confined concrete under axial compression have been proposed for columns with circular and rectangular cross-sections. However, modeling the axial strength and strain of concrete confined with FRP in elliptical cross-sections under compression is most limited. Therefore, this paper provides new expressions based on limited experimental data available in the literature. For a sufficient amount of FRP-confinement, the threshold value was proposed to be 0.02. Finally, the accuracy of the proposed model was verified by comparing its predictions with the same test database, together with those from the existing models.


Sign in / Sign up

Export Citation Format

Share Document