scholarly journals How Can the Gas Sector Contribute to a Climate-Neutral European Energy System? A Qualitative Approach

Author(s):  
Christian Lebelhuber ◽  
Horst Steinmüller

Background: Mitigating climate change requires fundamentally redesigned energy systems where renewable energy sources replace fossil fuels such as natural gas by 2050. Just how exactly this renewable energy will be transported to end users and how supply and demand will be balanced are still subject to lively debate. In this context the gas sector underlines its capability to contribute and claims its role in the EU energy system beyond the age of the fossil fuel natural gas. But on which specific arguments is this claim based and which enabling factors need to be considered? Methods: We take a two-step approach: We begin with a theoretically guided review of studies from energy industry and academic sources to discuss pros and cons from a holistic energy system design point of view. We then enrich our review with the results of an empirical focus group process, which leads us to possible enabling factors for unlocking the contributions of the gas sector to a climate-neutral energy system exemplified for Austria. Results: Beyond the widely acknowledged potential of the gas infrastructure for balancing growing renewable electricity generation and demand, we find that renewable gas could be a means to transport renewable energy to end users, and that it could be done using existing infrastructure. This could reduce the costs for society, increase public acceptance and ultimately speed up the transition to a climate-neutral energy system. However, this hinges on a supportive regulatory framework for energy markets and usage and on optimized resource utilization across the society as enabling factors. Conclusion: Developing a climate-neutral EU energy system will mean investing large amounts of money and completely overhauling our current system. The entire energy supply chain across various energy vectors must be optimized. This will require a technology-neutral and holistic approach. The regulatory framework must provide investment conditions that respect these principles. If it does, renewable gases could make a valuable contribution to achieving climate goals in an efficient, timely and publicly acceptable manner.

Author(s):  
Christian Lebelhuber ◽  
Horst Steinmüller

Background: Mitigating climate change requires fundamentally redesigned energy systems where renewable energy sources ultimately replace fossil fuels such as natural gas. In this context, the question how and to which extent the gas sector can contribute to an increasingly climate-neutral future EU energy system is heavily debated among scholars, energy industry experts and policymakers. Methods: We take a two-step approach: We begin with a review of studies from energy industry and academia to discuss potential gas sector contributions from a holistic energy system design point of view; this is followed by a comprehensive discussion of technical potentials, micro-economic conditions and societal implications of renewable gas. We then enrich our findings with the results of an empirical focus group process. Results: The gas sector may not only contribute to balancing volatile renewable energy production but also enable the supply of renewable energy to end-users in gaseous form; based on existing infrastructure. This could reduce costs for society, increase public acceptance and ultimately speed up the energy system transformation. There is the technical potential to substitute major parts of natural gas with renewable gas of biogenic and synthetic nature. While this will require public support, we observe this requirement in a comparable magnitude also for renewable electricity. Conclusion: Given the societal benefits and the competitiveness of renewable gas as compared to renewable alternatives, energy policymakers should incorporate renewable gas and the existing gas infrastructure in the overall energy system framework. The objective should be an optimized interplay of various energy vectors and its infrastructure along the entire energy supply chain. This requires a level playing field for different renewable technologies throughout different policy areas and a form of public support that strikes the balance between facilitating the gradual substitution of natural gas by renewable gas while maintaining public acceptance for this transformation despite realistically higher costs for end-users.


A Smart Grid is a reviving structure of traditional centralized power sector which incorporates smart software and hardware technologies. It provides communication among the prosumers and consumers to achieve sustainability and reliability in an economical way. A microgrid (MG) is a unit of smart grid which consists of distributed energy sources with renewable energy sources, energy storage units and variable loads. Because of stochastic nature of renewable energy sources to maintain balance between supply and demand a novel hybrid energy management controller need to be devised. This paper presents various operational objectives and constraints associated with energy management system of hybrid energy system. Also it compares and discusses various optimization algorithms in the literature.


2021 ◽  
Vol 2 (02) ◽  
pp. 59-71
Author(s):  
Mohammed A. M. Sadeeq ◽  
Subhi Zeebaree

The distributed energy system (DES) architecture is subject to confusion about renewable energy limits, primary energy supply and energy carriers' costs. For the grid to use unreliable electricity sources, the end-user's on-demand presence in the intelligent energy management context is essential. The participation of end-users could influence the management of the system and the volatility of energy prices. By delivering auxiliary services using demand side-resource to increase system reliability, robust planning, constraint control and scheduling, consumers may support grid operators. The optimized approach to managing energy resources enhances demand response to renewable energy sources integrally, controls the demand curve with load versatility as the system requires it. The opportunity to adjust/regulate the charging profile by choosing a particular device. This article discusses a literature and policy analysis that looks at the role of energy management system aggregators and the end-users participating in subsidiary systems within Smart Grid programmers and technologies. In the implementation of aggregators for energy management systems, the objective is to understand the patterns, threats, obstacles and potential obstacles.


Author(s):  
Nahid-Ur-Rahman Chowdhury ◽  
Khairul Islam ◽  
Fayazul Hasan

Electricity generation from distributed renewable energy sources is strongly increasing worldwide. Due to their intermittency in nature, the large scale integration of these renewable energy sources creates acute challenges to the existing energy system network. Thus, it is highly demanding to secure a reliable balance between energy generation and consumption. To overcome such challenges, peer-to-peer energy trading using blockchains on microgrid networks can play a significant role. In this paper, we present the concept of an efficient algorithm that can be useful for energy trading using blockchain from both the prosumers and consumers end. We also show the detailed outline of the methodology for energy transactions in a comprehensive way. The outcome of this study prove that if implemented properly this methodology can efficiently balance supply and demand locally and provide socio-economic benefits to the participants.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5227
Author(s):  
Laura Stößel ◽  
Leila Poddie ◽  
Tobias Spratte ◽  
Ralf Schelenz ◽  
Georg Jacobs

The pressure on the energy sector to reduce greenhouse gas emissions is increasing. In the light of current greenhouse gas emissions in the energy sector, further expansion of renewable energy sources (RES) is inevitable to reduce emissions and reach the climate goals. This study aims at investigating structural characteristics of German counties regarding advantages for self-sufficient power systems based on RES. The modelling of the power sector based on RES is coupled with a cluster analysis in order to draw a large-scale conclusion on structural characteristics beneficial or obstructive for municipal energy systems. Ten clusters are identified with the Ward algorithm in a hierarchical-agglomerative method. The results underline a further need for RES expansion projects in order to close the gap between supply and demand. Only then, bioenergy can effectively balance the offset and support a truly self-sufficient local energy system. While the model results indicate that the majority of the counties are suitable for further expansion, this suitability is to be questioned in cluster 10. High population density is a critical characteristic, because with it come both a high demand and limited sites for further RES expansion projects.


2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2021 ◽  
Vol 11 (11) ◽  
pp. 5142
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

The use of fossil fuels (coal, fuel, and natural gas) to generate electricity has been reduced in the European Union during the last few years, involving a significant decrease in greenhouse gas emissions [...]


Sign in / Sign up

Export Citation Format

Share Document