scholarly journals A Quantum Mechanical Relationship between Milgrom’s Acceleration Constant and the Bekenstein-Hawking Entropy Expression

Author(s):  
Engel Roza

Conceiving vacuum energy as gravitational particles subject to Heisenberg’s energy-time uncertainty, modelled as dipoles in a fluidal space at thermodynamic equilibrium, and interpreting the Bekenstein-Hawking entropy as the effective amount of spins of those dipoles enclosed within the event horizon of the universe, allows the calculation of Milgrom’s acceleration constant. The result is a quantum mechanical interpretation of gravity, and dark matter in particular.

Author(s):  
Engel Roza

Conceiving vacuum energy as gravitational particles subject to Heisenberg’s energy-time uncertainty, modelled as dipoles in a fluidal space at thermodynamic equilibrium, and interpreting the Bekenstein-Hawking entropy as the effective amount of spins of those dipoles enclosed within the event horizon of the universe, allows the calculation of Milgrom’s acceleration constant. The result is a quantum mechanical interpretation of gravity, and dark matter in particular.


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect of galaxies to the extent that a numerical value of Milgrom’s acceleration constant can be assigned by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy at the cosmological level. The result is an interpretation of gravity at the quantum level in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
R. Valentim ◽  
J. F. Jesus

AbstractEntropy is a fundamental concept from Thermodynamics and it can be used to study models on context of Creation Cold Dark Matter (CCDM). From conditions on the first ($$\dot{S}\ge 0$$ S ˙ ≥ 0 ) (throughout the present work we will use dots to indicate time derivatives and dashes to indicate derivatives with respect to scale factor) and second order ($$\ddot{S}<0$$ S ¨ < 0 ) time derivatives of total entropy in the initial expansion of Sitter through the radiation and matter eras until the end of Sitter expansion, it is possible to estimate the intervals of parameters. The total entropy ($$S_{t}$$ S t ) is calculated as sum of the entropy at all eras ($$S_{\gamma }$$ S γ and $$S_{m}$$ S m ) plus the entropy of the event horizon ($$S_h$$ S h ). This term derives from the Holographic Principle where it suggests that all information is contained on the observable horizon. The main feature of this method for these models are that thermodynamic equilibrium is reached in a final de Sitter era. Total entropy of the universe is calculated with three terms: apparent horizon ($$S_{h}$$ S h ), entropy of matter ($$S_{m}$$ S m ) and entropy of radiation ($$S_{\gamma }$$ S γ ). This analysis allows to estimate intervals of parameters of CCDM models.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


1996 ◽  
Vol 05 (04) ◽  
pp. 433-440 ◽  
Author(s):  
DHURJATI PRASAD DATTA

A simple quantum mechanical model of a closed interacting system is studied following the intrinsic time formalism developed recently, on the basis of the modified Born-Oppenheimer approximation. Apart from shedding further insights into the recent results on a possible nongravitating vacuum energy in the universe, the study also offers potentially interesting possibilities even in atomic/molecular physics.


Author(s):  
Jae-Kwang Hwang

The properties of the charged dark matters are discussed in terms of the new three-dimensional quantized space model. Because of the graviton evaporations, the very small Coulomb&rsquo;s constant (k(dd)) of 10 &minus;48 k and large gravitation constant (GN(dd)) of 106 GN for the charged dark matters at the present time are expected. The tentative values of G and k are used for the explanation purpose. Therefore, Fc(mm) &gt; Fg(dd) &gt; Fg(mm) &gt; Fg(dm) &gt; Fc(dd) &gt; Fc(dm) = Fc(lq) = 0 for the proton-like particle. Also, the gravitation constant has been changed with increasing of the time because of the graviton evaporation. In the present work, the B1, B2 and B3 bastons with the condition of k(mm) = k &gt;&gt; k(dd) &gt; k(dm) = 0 are explained as the good candidates of the dark matters. Also, the particle creation, dark matters and dark energy could be deeply associated with the changing gravitation constants (G). It is expected that the changing process of the gravitation constant between the matters from GN(mm) &asymp; 1036 GN to GN(mm) = GN happened mostly near the inflation period. Therefore, during most of the universe evolution the gravitation constant could be taken as GN(mm) = GN. And the effective charges and effective rest masses of the particles are defined in terms of the fixed Coulomb&rsquo;s constant (k) and fixed gravitation constant (GN). Then, the effective charge of the B1 dark matter with EC = &minus;2/3 e is (EC)eff = &minus;2/3&middot;10&minus;24 e.&nbsp;It is concluded that the photons, gravitons and dark matters are the first particles created since the big bang. The particles can be created from the decay of the matter universe and the pair production of the particle and anti-particle with decreasing of the gravitation constant (GN(mm)). Also, the weak force, strong force and dark matter force bosons are created from the interactions of the elementary particles with the T fluctuations of the vacuum energy.


Author(s):  
Biswaranjan Dikshit

Although general relativity has been successful in explaining many astronomical phenomena, few problems about the contents and evolution of the universe have remained mysterious since last century. Most important of them is the cosmological constant problem in which conventional calculation of vacuum (or dark) energy density using quantum mechanics leads to a value ~10114 J/m3 which is ~10123 times more than the vacuum energy (5.3&times;10-10 J/m3) estimated from astronomical observations of expanding universe. Similarly, cosmic coincidence problem questions why the matter energy density (ordinary plus dark matter) is of the same order as the vacuum energy density at present time. Finally, the mechanism responsible for spatial flatness and expansion of the universe are not clearly understood. In this paper, by taking the vacuum as a finite and closed quantum oscillator, we solve all of the above-mentioned problems. At first, by using purely quantum mechanical approach, we predict that the dark energy density is c4/(GR2) = 5.27&times;10-10 J/m3 (where R is radius of 3-sphere of universe) and matter energy density is c4/(2GR2) = 2.6&times;10-10 J/m3 which match well with astronomical observations. We also prove that the dark energy has always been ~66.7% and matter energy has been ~33.3% of total energy and hence, the so called cosmic coincidence problem doesn&rsquo;t exist. Next, we show how flatness of space could be maintained since the early stage of universe. Finally, using our model, we derive the expression for age and radius of universe which match well with the astronomical data.


2019 ◽  
Vol 28 (1) ◽  
pp. 220-227 ◽  
Author(s):  
Biswaranjan Dikshit

Abstract One of the most important problems in astronomy is the cosmological constant problem in which conventional calculation of vacuum energy density using quantum mechanics leads to a value which is ~10123 times more than the vacuum energy estimated from astronomical observations of expanding universe. The cosmic coincidence problem questions why matter energy density is of the same order of magnitude as the vacuum energy density at present time. Finally, the mechanism responsible for spatial flatness is not clearly understood. In this paper, by taking the vacuum as a finite and closed quantum oscillator, we solve all of the above-mentioned problems. At first, by using the purely quantum mechanical approach, we predict that the dark energy density is c4/(GR2) = 5.27×10−10 J/m3 (where R is radius of 3-sphere of the universe) and matter energy density is c4/(2GR2) = 2.6×10−10 J/m3 which match well with astronomical observations. We also prove that dark energy has always been ~66.7% and matter energy has been ~33.3% of the total energy and thus solve the cosmic coincidence problem. Next, we show how flatness of space could be maintained since the early stage of the universe. Finally, using our model, we derive the expression for age and radius of the universe which match well with the astronomical data.


Sign in / Sign up

Export Citation Format

Share Document