scholarly journals On the Vacuum Energy of the Universe at the Galaxy Level, the Cosmological Level and the Quantum Level

Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect of galaxies to the extent that a numerical value of Milgrom’s acceleration constant can be assigned by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy at the cosmological level. The result is an interpretation of gravity at the quantum level in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model.

Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


Author(s):  
Engel Roza

It is shown that the Lambda component in the cosmological Lambda-CDM model can be conceived as vacuum energy, consisting of gravitational particles subject to Heisenberg’s energy-time uncertainty. These particles can be modelled as elementary polarisable Dirac-type dipoles (“darks”) in a fluidal space at thermodynamic equilibrium, with spins that are subject to the Bekenstein-Hawking entropy. Around the baryonic kernels, uniformly distributed in the universe, the spins are polarized, thereby invoking an increase of the effective gravitational strength of the kernels. It explains the dark matter effect to the extent that the numerical value of Milgrom’s acceleration constant can be assessed by theory. Non-polarized vacuum particles beyond the baryonic kernels compose the dark energy. The result is a quantum mechanical interpretation of gravity in terms of quantitatively established shares in baryonic matter, dark matter and dark energy, which correspond with the values of the Lambda-CDM model..


Author(s):  
Engel Roza

Conceiving vacuum energy as gravitational particles subject to Heisenberg’s energy-time uncertainty, modelled as dipoles in a fluidal space at thermodynamic equilibrium, and interpreting the Bekenstein-Hawking entropy as the effective amount of spins of those dipoles enclosed within the event horizon of the universe, allows the calculation of Milgrom’s acceleration constant. The result is a quantum mechanical interpretation of gravity, and dark matter in particular.


Author(s):  
Engel Roza

Conceiving vacuum energy as gravitational particles subject to Heisenberg’s energy-time uncertainty, modelled as dipoles in a fluidal space at thermodynamic equilibrium, and interpreting the Bekenstein-Hawking entropy as the effective amount of spins of those dipoles enclosed within the event horizon of the universe, allows the calculation of Milgrom’s acceleration constant. The result is a quantum mechanical interpretation of gravity, and dark matter in particular.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944002 ◽  
Author(s):  
Spyros Basilakos ◽  
Nick E. Mavromatos ◽  
Joan Solà Peracaula

We present a string-based picture of the cosmological evolution in which (CP-violating) gravitational anomalies acting during the inflationary phase of the universe cause the vacuum energy density to “run” with the effective Hubble parameter squared, [Formula: see text], thanks to the axion field of the bosonic string multiplet. This leads to baryogenesis through leptogenesis with massive right-handed neutrinos. The generation of chiral matter after inflation helps in cancelling the anomalies in the observable radiation- and matter-dominated eras. The present era inherits the same “running vacuum” structure triggered during the inflationary time by the axion field. The current dark energy is thus predicted to be mildly dynamical, and dark matter should be made of axions. Paraphrasing Carl Sagan [ https://www.goodreads.com/author/quotes/10538.Carl_Sagan .]: we are all anomalously made from starstuff.


Author(s):  
H. A. Harutyunian

The physical mechanism of interaction between dark energy and ordinary baryonic matter is used to show that Ambartsumian's cosmogonic paradigm on the galaxy formation gets new support. This mechanism is considered to compare the cD galaxies observational properties with the model predictions in the framework of the suggested paradigm.


2000 ◽  
Vol 174 ◽  
pp. 360-372 ◽  
Author(s):  
Jaan Einasto ◽  
Maret Einasto

AbstractWe compare the characteristics of stellar populations with those of dark halos. Dark matter around galaxies, and in groups, clusters and voids is discussed. Modern data suggest that the overall density of matter in the Universe is ΩM = 0.3 ± 0.1, about 80 % of this matter is nonbaryonic dark matter, and about 20 % is baryonic, mostly in the form of hot intra-cluster and intragroup gas, the rest in stellar populations of galaxies. All bright galaxies are surrounded by dark matter halos of external radii 200 − 300 kpc; halos consist mostly of non-baryonic matter with some mixture of hot gas. The Universe is dominated by dark energy (cosmological constant) term. Dark matter dominates in the dynamical evolution of galaxies in groups and clusters.


Author(s):  
Engel Roza

In this article a two-parameter model is developed for the universe. The two parameters are the age of the universe and Milgrom’s acceleration constant. It is shown that these are sufficient to calculate the amounts of matter and dark energy in the universe, as well as the contributions of dark matter and baryonic matter in the matter part. All this, not only for present time, but also as a function of cosmological time. The developed theory gives an adequate explanation for the phenomena of the accelerated scaling of the universe and the anomaly of the stellar rotation curves in galaxies. The numerical results are in agreement with those of the Lamda-CDM model.


2015 ◽  
Vol 12 (03) ◽  
pp. 1550037 ◽  
Author(s):  
Carlos Castro

A Clifford-gravity-based model is exploited to build a generalized action (beyond the current ones used in the literature) and arrive at relevant numerical results which are consistent with the presently-observed de Sitter accelerating expansion of the universe driven by a very small vacuum energy density ρ obs ~ 10-120(MP)4 (MP is the Planck mass) and provide promising dark energy/matter candidates in terms of the 16 scalars corresponding to the degrees of freedom associated with a Cl (3, 1)-algebra-valued scalar field Φ in four dimensions.


2011 ◽  
Vol 26 (33) ◽  
pp. 2501-2521
Author(s):  
GREG P. PROPER

The prevailing view in modern cosmology is that the universe is comprised of immense quantities of exotic materials (i.e. Dark Matter and Dark Energy) that have yet to be positively identified. However, there is also a small group of scientists who believe that the answer to this dilemma is to be found in the modification of gravity (i.e. General Relativity). This short paper states that if we make the bold assumption that all objects/observers are comprised of sets of spacetime coordinates that change (albeit slowly) as the universe ages, then three puzzles that currently confront cosmologists, astronomers and astrophysicists can easily be answered using relatively simple calculations. The condition necessary to explore this possibility can be obtained if one postulates that relativistic gravitational potential lessens (in absolute magnitude) everywhere as the universe ages (n). That is, the spacetime metric gμν(x)→gμν(x, n). If gravity behaves in this manner, then it can be shown that it is the causitive agent of indeterminism in nature.


Sign in / Sign up

Export Citation Format

Share Document