scholarly journals Drought Effects on Vessel Plasticity of Two Endemic Magnolia Species in the Tropical Montane Cloud Forests of Eastern Mexico

Author(s):  
Ernesto Chanes Rodríguez-Ramírez ◽  
J. Antonio Vázquez-García ◽  
Othón Alcántara-Ayala ◽  
Isolda Luna-Vega

The distribution of Mexican Magnolia species´ occur under restricted climatic conditions. As many other tree species from the tropical montane cloud forests (TMCF), Magnolia species appear to be sensitive to drought. Through the use of dendrochronological techniques, this study aims to determine the climate influence on the vessel traits of M. vovidesii and M. schiedeana which are endangered tree species that are endemic to the Sierra Madre Oriental in eastern Mexico. Because most of the tree species in TMCFs are sensitive to climate fluctuations, it is necessary to investigate the differences in the climatic adaptability of the vessel architecture of these trees. This could allow us to further understand the potential peril of climate change on TMCFs. We compared vessel frequency, length and diameter in drought and non–drought years in two Mexican Magnolia species. We used tree–rings width and vessel traits to assess the drought effects on Magnolias’ diffuse–porous wood back to the year 1929. We obtained independent chronologies for M. vovidesii with a span of 75 years (1941–2016), while for M. schiedeana we obtained a span of 319 years (1697–2016). We found that temperature and precipitation are strongly associated with differences in tree–ring width (TRW) between drought and non–drought years. Our results showed anatomical differences in vessel trait response between these two Magnolia species to climatic variation. We suggest that our approach of combining dendroclimatic and anatomical techniques is a powerful tool to analyse anatomic wood plasticity to climatic variation in Magnolia species.

Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 514 ◽  
Author(s):  
Wuji Zheng ◽  
Xiaohua Gou ◽  
Jiajia Su ◽  
Haowen Fan ◽  
Ailing Yu ◽  
...  

Research Highlights: We compared annually resolved records of tree-ring width and stable isotope of dead and surviving Fokienia hodginsii (Dunn) Henry et Thomas trees. We provide new insights into the relationships and sensitivity of tree growth to past and current climate, and explored the underlying mechanism of drought-induced mortality in F. hodginsii. Background and Objectives: Drought-induced tree decline and mortality are increasing in many regions around the world. Despite the high number of studies that have explored drought-induced decline, species-specific responses to drought still makes it difficult to apply general responses to specific species. The endangered conifer species, Fokienia hodginsii, has experienced multiple drought-induced mortality events in recent years. Our objective was to investigate the historical and current responses to drought of this species. Materials and Methods: We used annually resolved ring-width and δ13C chronologies to investigate tree growth and stand physiological responses to climate change and elevated CO2 concentration (Ca) in both dead and living trees between 1960 and 2015. Leaf intercellular CO2 concentration (Ci), Ci/Ca and intrinsic water-use efficiency (iWUE) were derived from δ13C. Results: δ13C were positively correlated with mean vapor pressure deficit and PDSI from previous October to current May, while ring widths were more sensitive to climatic conditions from previous June to September. Moreover, the relationships between iWUE, basal area increment (BAI), and Ci/Ca changed over time. From 1960s to early 1980s, BAI and iWUE maintained a constant relationship with increasing atmospheric CO2 concentration. After the mid-1980s, we observed a decrease in tree growth, increase in the frequency of missing rings, and an unprecedented increase in sensitivity of 13C and radial growth to drought, likely related to increasingly dry conditions. Conclusions: We show that the recent increase in water stress is likely the main trigger for the unprecedented decline in radial growth and spike in mortality of F. hodginsii, which may have resulted from diminished carbon fixation and water availability. Given that the drought severity and frequency in the region is expected to increase in the future, our results call for effective mitigation strategies to maintain this endangered tree species.


2020 ◽  
Vol 13 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Ernesto Chanes Rodríguez-Ramírez ◽  
José Antonio Vázquez-García ◽  
Ignacio García-González ◽  
Othón Alcántara-Ayala ◽  
Isolda Luna-Vega

Abstract Aims We aimed to evaluate how climatic fluctuations influence the plasticity of anatomical vessel traits and the width of annual tree-rings of two relict-endemic Mexican Magnolia species. Notwithstanding, few studies have assessed the drought effect on vessel traits in tropical montane cloud trees of eastern Mexico. Methods Through digital images of growth rings, we assessed the tree radial growth rate, age of the trees and plasticity in vessel traits regarding climatic fluctuations of the Mexican Magnolia species studied. We compared vessel density, hydraulic diameter and percentage of conductive area in drought years (DY) and non-drought years (NDY) in two Mexican Magnolia species. Important Findings For the first time, the plasticity that occurs in porous wood vessel traits to long-term climatic fluctuations was analysed for two endangered Magnolia species (Magnolia vovidesii and M. schiedeana) from two tropical montane cloud forests in Mexico. We found that temperature and precipitation were strongly associated with differences in tree-ring width when DY and NDY were compared. Our analyses revealed that a high plasticity in vessel anatomy of diffuse-porous wood was related to temperature and/or water availability for both Magnolia species studied. We concluded that anatomical adaptations to DY resulted in a substantial reduction in vessel traits when compared with NDY, and that the plastic adaptations played an essential role in water transport and safety for the survival of the studied species during stressful long periods.


2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Faezah Pardi

This study was conducted at Pulau Jerejak, Penang to determine the floristic variation of its tree communities. A 0.5-hectare study plot was established and divided into 11 subplots. A total of 587 trees with diameter at breast height (DBH) of 5 cm and above were measured, identified and recorded. The tree communities comprised of 84 species, 63 genera and 32 families. The Myrtaceae was the most speciose family with 10 recorded species while Syzgium glaucum (Myrtaceae) was the most frequent species. The Myrtaceae recorded the highest density of 306 individuals while Syzgium glaucum (Myrtaceae) had the highest species density of 182 individuals. Total tree basal area (BA) was 21.47 m2/ha and family with the highest BA was Myrtaceae with 5.81 m2/ha while at species level, Syzgium glaucum (Myrtaceae) was the species with the highest total BA in the plot with value of 4.95 m2/ha. The Shannon˗Weiner Diversity Index of tree communities showed a value of 3.60 (H'max = 4.43) and Evenness Index of 0.81 which indicates high uniformity of tree species. The Margalef Richness Index (R') revealed that the tree species richness was 13.02. Myrtaceae had the highest Importance Value of 20.4%. The Canonical Correspondence Analysis (CCA) showed that Diospyros buxifolia (Ebenaceae) and Pouteria malaccensis (Sapotaceae) were strongly correlated to low pH. Dysoxylum cauliflorum (Meliaceae) and Eriobotrya bengalensis (Rosaceae) were correlated to phosphorus (P) and calcium ion (Ca2+), respectively. Therefore, the trees species composition at Pulau Jerejak showed that the biodiversity is high and conservation action should be implemented to protect endangered tree species. Keywords: Floristic variation; Tree communities; Trees composition; Pulau Jerejak; Species diversity


2006 ◽  
Vol 49 (4) ◽  
pp. 320-325 ◽  
Author(s):  
Heung Kyu Moon ◽  
Ji Ah Kim ◽  
So Young Park ◽  
Yong Wook Kim ◽  
Ho Duck Kang

2021 ◽  
Vol 12 ◽  
Author(s):  
Domen Arnič ◽  
Jožica Gričar ◽  
Jernej Jevšenak ◽  
Gregor Božič ◽  
Georg von Arx ◽  
...  

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960–2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.


2014 ◽  
Vol 37 (1) ◽  
pp. 69-72
Author(s):  
Giriraj Panwar ◽  
Kumar Ambrish ◽  
S. Srivastava

Indopiptadenia oudhensis (Brandis) Brenan is an endangered tree species of family Mimosaceae. Species is mainly distributed at Indo-Nepal border and facing threats such as anthropogenic pressure, habitat destruction, over exploitation, low seed viability and poor seed germination.


Sign in / Sign up

Export Citation Format

Share Document