scholarly journals Radiation Doses and Cancer Risk from CT Pulmonary Angiography Examinations

Author(s):  
Hanif Haspi Harun ◽  
Muhammad Khalis Abdul Karim ◽  
Zulkifly Abbas ◽  
Sarawana Chelwan Muniandy ◽  
Akmal Sabarudin ◽  
...  

The present study aims to investigate radiation doses from Computed Tomography Pulmonary Angiography (CTPA) examinations based on the patient’s size and to estimate the probability of cancer risk induced from the examination. Data from 100 patients who had undergone CTPA examinations, such as scanning acquisition parameters, patient demography, as well as radiation dose exposure, were collected and analysed. All subjects which aged above 18 y/o were scanned using a Philips Brilliance 128 multi-detector CT (MDCT) scanner. The mean dose value for Volume Computed Tomography Dose Index (CTDIvol), Dose-Length Product (DLP) and effective dose (E) were 11.06 ± 7.17 mGy, 400.38 ± 259.10 mGy.cm and 8.68 ± 5.47 mSv respectively. In addition, with respective of patient’s effective diameter, the mean SSDE value for Group 1, Group 2 and Group 3 were 9.93 ± 3.89, 13.70 ± 9.04 and 22.29 ± 7.35, respectively. Cancer risk per million procedure was calculated based on te recommendation by the International Commission on Radiological Protection Publication 103 report. The organ dose and cancer risk attained for breast, lung and liver were 17.05 ± 10.40 mGy (194 per one million procedure), 17.55 ± 10.86 mGy (192 per one million procedure) and 15.04 ± 9.75 mGy (53 per one million procedure), respectively. In conclusion, CTDIvol underestimated, and SSDE was more accurate in describing the radiation dose. Lung and breast with larger lung effective diameter received the highest dose exposure which increase the probability of the cancer risk. Therefore, it is important to apply optimised protocols in order to reduce patient’s exposure during CTPA examination.

Author(s):  
Hanif Haspi Harun ◽  
Muhammad Khalis Abdul Karim ◽  
Zulkifly Abbas ◽  
Sarawana Chelwan Muniandy ◽  
Akmal Sabarudin ◽  
...  

Computed Tomography (CT) scan examinations has greater demands especially in CT Pulmonary Angiography (CTPA) owing to the public and radiology personnel worries towards CT radiation exposure and risks. The aim of present study is to evaluate the comprehensive radiation exposure in computed tomography pulmonary angiography (CTPA) and its cancer risk. The records of 100 patients who had undergone CTPA were retrieved. The radiation dose exposure, scanning acquisition protocol as well as patient characteristics were noted. Radiation exposure were presented as Volume Computed Tomography Dose Index (CTDIvol), Size-Specific Dose Estimate (SSDE), Dose-Length Product (DLP), and effective dose (E) and organ dose. Effective cancer risk per million procedure was calculated by referring to the International Commission on Radiological Protection Publication 103. The CTDIvol, SSDE, DLP were comparable within different effective diameter groups. The average effective dose received by a patient was 8.68 mSv. The organ dose and effective cancer risk attained for breast, lung and liver were 17.05 ± 10.40 mGy (194 per one million procedure), 17.55 ± 10.86 mGy (192 per one million procedure) and 15.04 ± 9.75 mGy (53 per one million procedure), respectively. In conclusion, CTDIvol was undervalued and SSDE was more accurate in describing radiation dose exposure. The lungs and breast of subjects with large effective diameter were higher risk of developing cancer as they received the highest exposure. Therefore, extra safety measures should be considered for large-sized patients undergoing CTPA.Purpose: This study evaluates the comprehensive radiation exposure in computed tomography pulmonary angiography (CTPA) and its cancer risk.


Author(s):  
Hanif Haspi Harun ◽  
Muhammad Khalis Abdul Karim ◽  
Zulkifly Abbas ◽  
Sarawana Chelwan Muniandy ◽  
Akmal Sabarudin ◽  
...  

This study aims to evaluate the patient’s dose exposure from Computed Tomography Pulmonary Angiography (CTPA) examination and to estimates the cancer risk induced from the examinations based on the patient’s size. One hundred patients were recruited, and data information was collected retrospectively. A multi-detector (MDCT) (Philips Brilliance 128, USA) scanner were utilized for the CTPA examination, and dose data were obtained from the system. The effective diameter of each subjects’ image was measured for the Size-specific dose estimates (SSDEs). All subjects divided into Group 1 (19 – 25 cm), Group 2 (25-28 cm) and Group 3 (28-38 cm), where the association between gender were analysed. Effective dose (E), SSDE, organ dose and cancer risk of each group were evaluated and compared statistically using independent t-test and one-way ANOVA. The range of mean CTDIvol, DLP and E values were (6.44 – 17.42 mGy), (239 – 631 mGy), (5.19 – 13.90 mSv), respectively. In respective with the patient’s effective diameter, the mean SSDE value for Group 1, Group 2 and Group 3 were 9.93 ± 3.89 mGy, 13.70 ± 9.04 mGy and 22.29 ± 7.35 mGy. The organ dose and cancer risk attained for breast, lung and liver were 17.05 ± 10.40 mGy (194 per one million procedure), 17.55 ± 10.86 mGy (192 per one million procedure) and 15.04 ± 9.75 mGy (53 per one million procedure), respectively. Lung and breast with more massive patient’s effective diameter received the highest dose exposure which increases the probability of the cancer risk. CTDIvol was found to be underestimated, and SSDE provides more accurate in describing the radiation dose and cancer risk. Body effective diameter found to be significant on the estimation except for gender. Therefore, it is essential to apply optimised protocols in order to reduce patient’s exposure during CTPA examination.


2021 ◽  
Vol 17 (3) ◽  
pp. 216-221
Author(s):  
Fawad Yasin ◽  
Anum Rasheed ◽  
Muhammad Nauman Malik ◽  
Farheen Raza ◽  
Ramish Riaz ◽  
...  

OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length


2018 ◽  
Vol 185 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Abdulaziz A Qurashi ◽  
Louise A Rainford ◽  
Khalid M Alshamrani ◽  
Shane J Foley

Abstract The aim of this study was to evaluate how iterative reconstruction can compensate for the noise increase in low radiation dose abdominal computed tomography (CT) technique for large size patients and the general impact of obesity on abdominal organ doses and image quality in CT. An anthropomorphic phantom layered with either none or a single layer of 3-cm- thick circumferential animal fat packs to simulate obese patients was imaged using a 128MDCT scanner. Abdominal protocols (n = 12) were applied using automatic tube current modulation (ATCM) with various quality reference mAs (150, 200, 250 and 300). kVs of 100, 120 and 140 were used for each mAs selection. Metal oxide semiconductor field effect transistor dosimeters (MOSFET) measured internal organ dose. All images produced were reconstructed with filtered back projection (FBP) and sinogram affirmed iterative reconstruction (SAFIRE) (3, 4 and 5) and objective noise was measured within three regions of interest at the level of L4–L5. Organ doses varied from 0.12 to 41.9 mGy, the spleen received the highest doses for both phantom sizes. Compared to the phantom simulating average size, the obese phantom was associated with up to twofold increase in delivered mAs, dose length product (DLP) and computed tomography dose index (CTDIvol) for the matched mAs selection (p < 0.05). However, organ dose increased by 50% only. The use of 100 kV resulted in a 40% lower dose (p < 0.05) compared to 120 kV and the associated noise increase was improved by SAFIRE (5) use, which resulted in 60% noise reduction compared to FBP (p < 0.05). When combined with iterative reconstruction, low kV is feasible for obese patients to optimise radiation dose and maintain objective image quality.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Chengwen Yang ◽  
Ransheng Liu ◽  
Xin Ming ◽  
Ningbo Liu ◽  
Yong Guan ◽  
...  

Purpose. To investigate the dose depositions to organs at risk (OARs) and associated cancer risk in cancer patients scanned with 4-dimensional computed tomography (4DCT) as compared with conventional 3DCT. Methods and Materials. The radiotherapy treatment planning CT image and structure sets of 102 patients were converted to CT phantoms. The effective diameters of those patients were computed. Thoracic scan protocols in 4DCT and 3DCT were simulated and verified with a validated Monte Carlo code. The doses to OARs (heart, lungs, esophagus, trachea, spinal cord, and skin) were calculated and their correlations with patient effective diameter were investigated. The associated cancer risk was calculated using the published models in BEIR VII reports. Results. The average of mean dose to thoracic organs was in the range of 7.82-11.84 cGy per 4DCT scan and 0.64-0.85 cGy per 3DCT scan. The average dose delivered per 4DCT scan was 12.8-fold higher than that of 3DCT scan. The organ dose was linearly decreased as the function of patients’ effective diameter. The ranges of intercept and slope of the linear function were 17.17-30.95 and -0.0278--0.0576 among patients’ 4DCT scans, and 1.63-2.43 and -0.003--0.0045 among patients’ 3DCT scans. Relative risk of cancer increased (with a ratio of 15.68:1) resulting from 4DCT scans as compared to 3DCT scans. Conclusions. As compared to 3DCT, 4DCT scans deliver more organ doses, especially for pediatric patients. Substantial increase in lung cancer risk is associated with higher radiation dose from 4DCT and smaller patients’ size as well as younger age.


Tomography ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 120-130
Author(s):  
Narumol Chaosuwannakit ◽  
Phatraporn Aupongkaroon ◽  
Pattarapong Makarawate

Objective: To evaluate computed tomography angiography (CTA) data focusing on radiation dose parameters in Thais with Marfan syndrome (MFS) and estimate the distribution of cumulative radiation exposure from CTA surveillance and the risk of cancers. Methods: Between 1st January 2015 and 31st December 2020, we retrospectively evaluated the cumulative CTA radiation doses of MFS patients who underwent CTA at Khon Kaen University Hospital, a leading teaching hospital and advanced tertiary care institution in northeastern Thailand. We utilized the Radiation Risk Assessment Tool (RadRAT) established at the National Cancer Institute in Bethesda, Maryland, to evaluate the risk of cancer-related CTA radiation. Results: The study recruited 29 adult MFS patients who had CTA of the aorta during a 5-year study period with 89 CTA studies. The mean cumulative CTDI vol is 21.5 ± 14.68 mGy, mean cumulative DLP is 682.2 ± 466.7 mGy.cm, the mean baseline future risk for all cancer is 26,134 ± 7601 per 100,000, and the excess lifetime risk for all cancer is 2080.3 ± 1330 per 100,000. The excess lifetime risk of radiation-induced cancer associated with the CTA surveillance study is significantly lower than the risk of aortic dissection or rupture and lower than the baseline future cancer risk. Conclusions: We attempted to quantify the radiation-induced cancer risk from CTA surveillance imaging performed for MFS patients in this study, with all patients receiving a low-risk cumulative radiation dose (less than 1 Gy) and all patients having a low excessive lifetime risk of cancer as a result of CTA. The risk–benefit decision must be made at the point of care, and it entails balancing the benefits of surveillance imaging in anticipating rupture and providing practical, safe treatment, therefore avoiding morbidity and mortality.


Author(s):  
Akintayo Daniel Omojola ◽  
Michael Onoriode Akpochafor ◽  
Samuel Olaolu Adeneye ◽  
Isiaka Olusola Akala ◽  
Azuka Anthonio Agboje

Abstract Background The use of X-ray as a diagnostic tool for complication and anomaly in the neonatal patient has been helpful, but the effect of radiation on newborn stands to increase their cancer risk. This study aims to determine the mean, 50th percentile (quartile 2 (Q2)), and 75th percentile (quartile 3 (Q3)) entrance surface dose (ESD) from anteroposterior (AP) chest X-ray and to compare our findings with other relevant studies. The study used calibrated thermoluminescent dosimeters (TLDs), which was positioned on the central axis of the patient. The encapsulated TLD chips were held to the patients’ body using paper tape. The mean kilovoltage peak (kVp) and milliampere seconds (mAs) used was 56.63(52–60) and 5.7 (5–6.3). The mean background TLD counts were subtracted from the exposed TLD counts and a calibration factor was applied to determine ESD. Results The mean ESDs of the newborn between 1 and 7, 8 and 14, 15 and 21, and 22 and 28 days were 1.09 ± 0.43, 1.15 ± 0.50, 1.19 ± 0.45, and 1.32 ± 0.47 mGy respectively. A one-way ANOVA test shows that there were no differences in the mean doses for the 4 age groups (P = 0.597). The 50th percentile for the 4 age groups was 1.07, 1.26, 1.09, and 1.29 mGy respectively, and 75th percentile were 1.41, 1.55, 1.55, and 1.69 mGy respectively. The mean effective dose (ED) in this study was 0.74 mSv, and the estimated cancer risk was 20.7 × 10−6. Conclusion ESD was primarily affected by the film-focus distance (FFD) and the patient field size. The ESD at 75th percentile and ED in this study was higher compared to other national and international studies. The estimated cancer risk to a newborn was below the International Commission on Radiological Protection (ICRP) limit for fatal childhood cancer (2.8 × 10−2Sv−1).


2022 ◽  
Author(s):  
M. El Mansouri ◽  
M. Talbi ◽  
A. Choukri ◽  
O. Nhila ◽  
M. Aabid

In Morocco, the radiation doses received by adult patients are increasing due to the number of CT examinations performed and the larger number of computed tomography (CT) scanners installed. The aim of this study was to evaluate the radiation doses received by patients for the most common adult CT examinations in order to establish local diagnostic reference levels (DRLs). Data from 1016 adult patients were collected during 3 months from four Moroccan hospitals. Dose length product (DLP) and volumetric computed tomography dose index (CTDIvol) were evaluated by determining the 75th percentile as diagnostic reference levels for the most common examinations including head, chest and abdomen. The DRL for each examination was compared with other studies. The established DRLs in Morocco in terms of CTDIvol were 57.4, 12.3 and 10.9 for CT examinations of the head, chest, abdomen, respectively. For DLP, they were 1020, 632 and 714, respectively. These established DRLs for CTDIvol were almost similar to the UK DRLs at all examinations, higher than the Egyptian DRLs and lower than the Japanese DRLs at the head CT examination, lower than the DRLs from Egypt and Japan at the CT abdomen examination. In terms of DLP, the DRLs were higher than those of the British studies, lower than those of the Egyptian and Japanese studies at the head CT examination were higher at chest CT and lower at abdominal CT than those of all selected studies. The higher level of established DRLs in our study demonstrates the requirement of an optimization process while keeping a good image quality for a reliable diagnosis.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Richard G. Kavanagh ◽  
John O’Grady ◽  
Brian W. Carey ◽  
Patrick D. McLaughlin ◽  
Siobhan B. O’Neill ◽  
...  

Magnetic resonance imaging (MRI) is the mainstay method for the radiological imaging of the small bowel in patients with inflammatory bowel disease without the use of ionizing radiation. There are circumstances where imaging using ionizing radiation is required, particularly in the acute setting. This usually takes the form of computed tomography (CT). There has been a significant increase in the utilization of computed tomography (CT) for patients with Crohn’s disease as patients are frequently diagnosed at a relatively young age and require repeated imaging. Between seven and eleven percent of patients with IBD are exposed to high cumulative effective radiation doses (CEDs) (>35–75 mSv), mostly patients with Crohn’s disease (Newnham E 2007, Levi Z 2009, Hou JK 2014, Estay C 2015). This is primarily due to the more widespread and repeated use of CT, which accounts for 77% of radiation dose exposure amongst patients with Crohn’s disease (Desmond et al., 2008). Reports of the projected cancer risks from the increasing CT use (Berrington et al., 2007) have led to increased patient awareness regarding the potential health risks from ionizing radiation (Coakley et al., 2011). Our responsibilities as physicians caring for these patients include education regarding radiation risk and, when an investigation that utilizes ionizing radiation is required, to keep radiation doses as low as reasonably achievable: the “ALARA” principle. Recent advances in CT technology have facilitated substantial radiation dose reductions in many clinical settings, and several studies have demonstrated significantly decreased radiation doses in Crohn’s disease patients while maintaining diagnostic image quality. However, there is a balance to be struck between reducing radiation exposure and maintaining satisfactory image quality; if radiation dose is reduced excessively, the resulting CT images can be of poor quality and may be nondiagnostic. In this paper, we summarize the available evidence related to imaging of Crohn’s disease, radiation exposure, and risk, and we report recent advances in low-dose CT technology that have particular relevance.


2020 ◽  
Vol 10 ◽  
pp. 74
Author(s):  
Prashant Nagpal ◽  
Sarv Priya ◽  
Ali Eskandari ◽  
Aidan Mullan ◽  
Tanya Aggarwal ◽  
...  

Objectives: Computed tomography pulmonary angiogram (CTPA) is one of the most commonly ordered and frequently overused tests. The purpose of this study was to evaluate the mean radiation dose to patients getting CTPA and to identify factors that are associated with higher dose. Material and Methods: This institutionally approved retrospective study included all patients who had a CTPA to rule out acute pulmonary embolism between 2016 and 2018 in a tertiary care center. Patient data (age, sex, body mass index [BMI], and patient location), CT scanner type, image reconstruction methodology, and radiation dose parameters (dose-length product [DLP]) were recorded. Effective dose estimates were obtained by multiplying DLP by conversion coefficient (0.014 mSv•mGy−1•cm−1). Multivariate logistic regression analysis was performed to determine the factors affecting the radiation dose. Results: There were 2342 patients (1099 men and 1243 women) with a mean age of 58.1 years (range 0.2–104.4 years) and BMI of 31.3 kg/m2 (range 12–91.5 kg/m2). The mean effective radiation dose was 5.512 mSv (median – 4.27 mSv; range 0.1–43.0 mSv). Patient factors, including BMI >25 kg/m2, male sex, age >18 years, and intensive care unit (ICU) location, were associated with significantly higher dose (P < 0.05). CT scanning using third generation dual-source scanner with model-based iterative reconstruction (IR) had significantly lower dose (mean: 4.90 mSv) versus single-source (64-slice) scanner with filtered back projection (mean: 9.29 mSv, P < 0.001). Conclusion: Patients with high BMI and ICU referrals are associated with high CT radiation dose. They are most likely to benefit by scanning on newer generation scanner using advance model-based IR techniques.


Sign in / Sign up

Export Citation Format

Share Document