scholarly journals Modeling Spacetime as a Branched Covering Space over 2-Knots

Author(s):  
Christopher Duston

In this paper we review a proposal to represent the geometric degrees of freedom of the gravitational field as a branched covering space, and introduce a new application of this in which the branch loci are 1- or 2-knots. This allows one to construct arbitrary smooth, closed 3- and 4-manifolds with enough geometric and topological information to write down a partition function and calculate statistical quantities in the thermodynamic limit. Further, we find clear evidence for a dimensional reduction of the spacetime geometry from four to two. As an example, we choose a family of smooth 4-manifolds presented in this way, and calculate the entropy of the system.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


2008 ◽  
Vol 17 (02) ◽  
pp. 265-273 ◽  
Author(s):  
JAMES A. ISENBERG

The analysis of a general multibody physical system governed by Einstein's equations is quite difficult, even if numerical methods (on a computer) are used. Some of the difficulties — many coupled degrees of freedom, dynamic instability — are associated with the presence of gravitational waves. We have developed a number of "waveless approximation theories" (WAT's) which repress the gravitational radiation and thereby simplify the analysis. The matter, according to these theories, evolves dynamically. The gravitational field, however, is determined at each time step by a set of elliptic equations with matter sources. There is reason to believe that for many physical systems, the WAT-generated system evolution is a very accurate approximation to that generated by the full Einstein theory.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043012
Author(s):  
Tejinder P. Singh

We start from classical general relativity coupled to matter fields. Each configuration variable and its conjugate momentum, as also spacetime points are raised to the status of matrices [equivalently operators]. These matrices obey a deterministic Lagrangian dynamics at the Planck scale. By coarse-graining this matrix dynamics over time intervals much larger than Planck time, one derives quantum theory as a low energy emergent approximation. If a sufficiently large number of degrees of freedom get entangled, spontaneous localisation takes place, leading to the emergence of classical spacetime geometry and a classical universe. In our theory, dark energy is shown to be a large-scale quantum gravitational phenomenon. Quantum indeterminism is not fundamental, but results from our not probing physics at the Planck scale.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 138
Author(s):  
Panayiotis Stavrinos ◽  
Christos Savvopoulos

The aim of this paper is to provide the geometrical structure of a gravitational field that includes the addition of dark matter in the framework of a Riemannian and a Riemann–Sasaki spacetime. By means of the classical Riemannian geometric methods we arrive at modified geodesic equations, tidal forces, and Einstein and Raychaudhuri equations to account for extra dark gravity. We further examine an application of this approach in cosmology. Moreover, a possible extension of this model on the tangent bundle is studied in order to examine the behavior of dark matter in a unified geometric model of gravity with more degrees of freedom. Particular emphasis shall be laid on the problem of the geodesic motion under the influence of dark matter.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Christoph P. Hofmann

The systematic effective Lagrangian method was first formulated in the context of the strong interaction; chiral perturbation theory (CHPT) is the effective theory of quantum chromodynamics (QCD). It was then pointed out that the method can be transferred to the nonrelativistic domain—in particular, to describe the low-energy properties of ferromagnets. Interestingly, whereas for Lorentz-invariant systems the effective Lagrangian method fails in one spatial dimension (ds=1), it perfectly works for nonrelativistic systems in ds=1. In the present brief review, we give an outline of the method and then focus on the partition function for ferromagnetic spin chains, ferromagnetic films, and ferromagnetic crystals up to three loops in the perturbative expansion—an accuracy never achieved by conventional condensed matter methods. We then compare ferromagnets in ds=1, 2, 3 with the behavior of QCD at low temperatures by considering the pressure and the order parameter. The two apparently very different systems (ferromagnets and QCD) are related from a universal point of view based on the spontaneously broken symmetry. In either case, the low-energy dynamics is described by an effective theory containing Goldstone bosons as basic degrees of freedom.


Universe ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 80 ◽  
Author(s):  
Tomi Koivisto ◽  
Georgios Tsimperis

The observer’s frame is the more elementary description of the gravitational field than the metric. The most general covariant, even-parity quadratic form for the frame field in arbitrary dimension generalises the New General Relativity by nine functions of the d’Alembertian operator. The degrees of freedom are clarified by a covariant derivation of the propagator. The consistent and viable models can incorporate an ultra-violet completion of the gravity theory, an additional polarisation of the gravitational wave, and the dynamics of a magnetic scalar potential.


2009 ◽  
Vol 18 (14) ◽  
pp. 2323-2327
Author(s):  
CENALO VAZ

The existence of a thermodynamic description of horizons indicates that space–time has a microstructure. While the "fundamental" degrees of freedom remain elusive, quantizing Einstein's gravity provides some clues about their properties. A quantum AdS black hole possesses an equispaced mass spectrum, independent of Newton's constant, G, when its horizon radius is large compared to the AdS length. Moreover, the black hole's thermodynamics in this limit is inextricably connected with its thermodynamics in the opposite (Schwarzschild) limit by a duality of the Bose partition function. G, absent in the mass spectrum, re-emerges in the thermodynamic description through the Schwarzschild limit, which should be viewed as a natural "ground state." It seems that the Hawking–Page phase transition separates fundamental, "particle-like" degrees of freedom from effective, "geometric" ones.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Andrea Amoretti ◽  
Alessandro Braggio ◽  
Giacomo Caruso ◽  
Nicola Maggiore ◽  
Nicodemo Magnoli

We consider the fermionization of a bosonic-free theory characterized by the3+1Dscalar-tensor duality. This duality can be interpreted as the dimensional reduction, via a planar boundary, of the4+1Dtopological BF theory. In this model, adopting the Sommerfield tomographic representation of quantized bosonic fields, we explicitly build a fermionic operator and its associated Klein factor such that it satisfies the correct anticommutation relations. Interestingly, we demonstrate that this operator satisfies the massless Dirac equation and that it can be identified with a3+1DWeyl spinor. Finally, as an explicit example, we write the integrated charge density in terms of the tomographic transformed bosonic degrees of freedom.


The Hamiltonian description of massless spin zero- and one-fields in Minkowski space is first recast in a way that refers only to null infinity and fields thereon representing radiative modes. With this framework as a guide, the phase space of the radiative degrees of freedom of the gravitational field (in exact general relativity) is introduced. It has the structure of an infinite-dimensional affine manifold (modelled on a Fréchet space) and is equipped with a continuous, weakly non-degenerate symplectic tensor field. The action of the Bondi-Metzner-Sachs group on null infinity is shown to induce canonical transformations on this phase space. The corresponding Hamiltonians – i. e. generating functions – are computed and interpreted as fluxes of supermomentum and angular momentum carried away by gravitational waves. The discussion serves three purposes: it brings out, via symplectic methods, the universality of the interplay between symmetries and conserved quantities; it sheds new light on the issue of angular momentum of gravitational radiation; and, it suggests a new approach to the quantization of the ‘true’ degrees of freedom of the gravitational field.


Sign in / Sign up

Export Citation Format

Share Document