scholarly journals Catalytic Combustion of Dimethyl Disulfide on Bimetallic Supported Catalysts Prepared by the Wet-Impregnation Method

Author(s):  
Junan Gao ◽  
Song Gao ◽  
Jun Wei ◽  
Hong Zhao ◽  
Jie Zhang

In this paper, the catalytic combustion of DMDS (dimethyl disulfide, CH3SSCH3) over bimetallic supported catalysts were investigated. It was confirmed that Cu/γ-Al2O3-CeO2 showed best catalytic performance among the five single-metal catalysts. Furthermore, six different metals were separately added into Cu/γ-Al2O3-CeO2 to investigate the promoting effect. The experiments revealed Pt as the most effective promoter and the the best catalytic performance was achieved as the adding amount of 0.3 wt%. The characterization results indicated that high activity and resistance to sulfur poisoning of Cu-Pt/γ-Al2O3-CeO2 could be attributed to the synergistic effect between Cu and Pt.

Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 994 ◽  
Author(s):  
Junan Gao ◽  
Song Gao ◽  
Jun Wei ◽  
Hong Zhao ◽  
Jie Zhang

In this paper, the catalytic combustion of DMDS (dimethyl disulfide, CH3SSCH3) over bimetallic supported catalysts were investigated. It was confirmed that Cu/γ-Al2O3-CeO2 showed best catalytic performance among the five single-metal catalysts. Furthermore, six different metals were separately added into Cu/γ-Al2O3-CeO2 to investigate the promoting effect. The experiments revealed Pt as the most effective promoter and the best catalytic performance was achieved as the adding amount of 0.3 wt%. The characterization results indicated that high activity and resistance to sulfur poisoning of Cu-Pt/γ-Al2O3-CeO2 could be attributed to the synergistic effect between Cu and Pt.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 947 ◽  
Author(s):  
Edson Edain González ◽  
Ricardo Rangel ◽  
Javier Lara ◽  
Pascual Bartolo-Pérez ◽  
Juan José Alvarado-Gil ◽  
...  

Nowadays, one of the most important challenges that humanity faces is to find alternative ways of reducing pollutant emissions. CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were prepared to efficiently transform carbon monoxide (CO) to carbon dioxide (CO2) at low temperatures. The systems were prepared in a two-step process. First, Bi2Mo1−xRuxO6 supports were synthesized through the hydrothermal procedure under microwave heating. Then, CeO2 was deposited on Bi2Mo1−xRuxO6 using the wet impregnation method, while the incipient impregnation method was selected to deposit gold nanoparticles. The CeO2/Bi2Mo1−xRuxO6 and Au/Bi2Mo1−xRuxO6 catalysts were characterized using SEM microscopy and XRD. Furthermore, energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were used. Tests were carried out for the supported catalysts in CO oxidation, and high conversion values, nearing 100%, was observed in a temperature range of 100 to 250 °C. The results showed that the best system was the Au/Bi2Mo0.95Ru0.05O6 catalyst, with CO oxidation starting at 50 °C and reaching 100% conversion at 186 °C.


2010 ◽  
Vol 75 (8) ◽  
pp. 1115-1124 ◽  
Author(s):  
Gheorghiţa Mitran ◽  
Ioan-Cezar Marcu ◽  
Adriana Urdă ◽  
Ioan Săndulescu

Vanadium-molybdenum oxides supported on Al2O3, CeO2 and TiO2 were prepared by a ?wet? impregnation method, characterized using DRX, N2 adsorption, UV-Vis spectroscopy, electrical conductivity measurements and tested in the oxidative dehydrogenation of isobutane. The catalytic performance in the oxidative dehydrogenation of isobutane at 400-550?C depended on the nature of support and on the content of VMoO species on the support. The catalysts supported on alumina were more active and selective than those supported on ceria and titania.


2011 ◽  
Vol 324 ◽  
pp. 162-165 ◽  
Author(s):  
Tarek Barakat ◽  
Gauthier Finne ◽  
Manuel Franco ◽  
Renaud Cousin ◽  
Jean Marc Giraudon ◽  
...  

The catalytic performance of a commercial TiO2 was investigated towards the total oxidation of toluene. A variety of two titania supports was used in this work, shaped (pellets) and non-shaped (powder) materials. 0.5wt% Pd or Pt were impregnated onto both types of titania supports using the wet impregnation method. A decrease in the surface area of the obtained catalysts was noticed after the catalytic test, although it was still much higher than that of classical titania supports. The catalysts were tested in the total oxidation of toluene, and a major decrease in activity was noticed for Pt impregnated “shaped” supports.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3448
Author(s):  
Adrián García ◽  
Rut Sanchis ◽  
Francisco J. Llopis ◽  
Isabel Vázquez ◽  
María Pilar Pico ◽  
...  

γ-Valerolactone (GVL) is a valuable chemical that can be used as a clean additive for automotive fuels. This compound can be produced from biomass-derived compounds. Levulinic acid (LA) is a compound that can be obtained easily from biomass and it can be transformed into GVL by dehydration and hydrogenation using metallic catalysts. In this work, catalysts of Ni (a non-noble metal) supported on a series of natural and low-cost clay-materials have been tested in the transformation of LA into GVL. Catalysts were prepared by a modified wet impregnation method using oxalic acid trying to facilitate a suitable metal dispersion. The supports employed are attapulgite and two sepiolites with different surface areas. Reaction tests have been undertaken using an aqueous medium at moderate reaction temperatures of 120 and 180 °C. Three types of experiments were undertaken: (i) without H2 source, (ii) using formic acid (FA) as hydrogen source and (iii) using Zn in order to transform water in hydrogen through the reaction Zn + H2O → ZnO + H2. The best results have been obtained combining Zn (which plays a double role as a reactant for hydrogen formation and as a catalyst) and Ni/attapulgite. Yields to GVL higher than 98% have been obtained at 180 °C in the best cases. The best catalytic performance has been related to the presence of tiny Ni particles as nickel crystallites larger than 4 nm were not present in the most efficient catalysts.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1777 ◽  
Author(s):  
Anis Hamza Fakeeha ◽  
Samsudeen Olajide Kasim ◽  
Ahmed Aidid Ibrahim ◽  
Ahmed Elhag Abasaeed ◽  
Ahmed Sadeq Al-Fatesh

A promising method to reduce global warming has been methane reforming with CO2, as it combines two greenhouse gases to obtain useful products. In this study, Ni-supported catalysts were synthesized using the wet impregnation method to obtain 5%Ni/Al2O3(SA-5239), 5%Ni/Al2O3(SA-6175), 5%Ni/SiO2, 5%Ni/MCM41, and 5%Ni/SBA15. The catalysts were tested in dry reforming of methane at 700 °C, 1 atm, and a space velocity of 39,000 mL/gcat h, to study the interaction of Ni with the supports, and evaluation was based on CH4 and CO2 conversions. 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 gave the highest conversion of CH4 (78 and 75%, respectively) and CO2 (84 and 82%, respectively). The catalysts were characterized by some techniques. Ni phases were identified by X-ray diffraction patterns. Brunauer–Emmett–Teller analysis showed different surface areas of the catalysts with the least being 4 m2/g and the highest 668 m2/g belonging to 5%Ni/Al2O3(SA-5239) and 5%Ni/SBA15, respectively. The reduction profiles revealed weak NiO-supports interaction for 5%Ni/Al2O3(SA-5239), 5%Ni/MCM41, and 5%Ni/SBA15; while strong interaction was observed in 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2. The 5%Ni/Al2O3(SA-6175) and 5%Ni/SiO2 were close with respect to performance; however, the former had a higher amount of carbon deposit, which is mostly graphitic, according to the conducted thermal analysis. Carbon deposits on 5%Ni/SiO2 were mainly atomic in nature.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 100
Author(s):  
Paula Oulego ◽  
Amanda Laca ◽  
Sonia Calvo ◽  
Mario Díaz

Metal nanoparticles have been reported as effective catalysts for the removal of refractory compounds from industrial wastewaters in advanced oxidation processes. Additionally, hundreds of thousands of tons of eggshells are discarded worldwide each year. In this work, this waste has been evaluated as support for the synthesis of nanomaterials by wet impregnation method. Four supported catalysts, with a load of iron or copper of 5% and 15%, were prepared and thoroughly characterized by means of different techniques (elemental analysis, XRF, XRD, FTIR, N2 adsorption-desorption, SEM, TEM and TGA). The catalysts performance was evaluated in wet oxidation tests to degrade humic acids, analyzing the evolution with time of COD, biodegradability index (BOD5/COD), color number and pH. The best results were achieved with 15% Cu and 5% Fe catalysts (COD reduction being 82.3% and 75.1%, respectively), whereas a COD reduction of 58% was obtained employing non-impregnated eggshell. This can be mainly attributed to the metal loading and the good metal distribution on the surface of the support. The BOD5 value of humic acids was initially null and, in all assays, the oxidation treatment enhanced the biodegradability. Therefore, eggshell has proved to be an interesting material to be employed as support in nanoparticles preparation.


2012 ◽  
Vol 2012 ◽  
pp. 1-6
Author(s):  
M. A. Usman ◽  
T. O. Alaje ◽  
V. I. Ekwueme ◽  
E. A. Awe

Highly ordered mesoporous materials are opening the door to new opportunities in catalysis due to their extraordinary intrinsic features. In this study, Nickel was supported on highly ordered mesoporous silica (KIT-6) by the wet impregnation method, and its performance in the hydrogenation of edible vegetable oil was compared with that of Ni/Activated carbon prepared using the same method as well as with unsupported Nickel. The degree of conversion for the 50 : 50 Ni/KIT-6 was 81%, as compared to the 29% obtained with 50 : 50 Ni/Activated carbons. The conversion was found to improve with an increase in mass of supported Nickel on KIT-6 thus 20 : 80 Ni/KIT-6 and 30 : 70 Ni/KIT-6 produced conversions of 71% and 74%, respectively. Key among the benefits of KIT-6 when used as a support material is the very high surface area, open framework of the 3D bicontinuous interconnected channels, and the well-ordered mesopores which bestow on it an advanced mass transfer characteristics.


Cerâmica ◽  
2018 ◽  
Vol 64 (371) ◽  
pp. 436-442 ◽  
Author(s):  
E. O. Moraes Júnior ◽  
J. O. Leite ◽  
A. G. Santos ◽  
M. J. B. Souza ◽  
A. M. Garrido Pedrosa

Abstract La1-xSrxNiO3 (x= 0.0, 0.3 or 0.7) perovskite-type oxides were synthesized using the modified proteic gel method and using collagen as an organic precursor. Catalysts of La1-xSrxNiO3/Al2O3 were obtained using the wet impregnation method. The synthesized catalysts were characterized by X-ray diffraction, surface area and temperature-programmed reduction. The catalysts were evaluated in the partial oxidation reaction of methane, and the levels of selectivity to CO, CO2, H2 and H2O were determined. Among the catalysts studied, the catalyst LaNiO3/Al2O3 had the highest methane conversion level (78%) and higher H2 selectivity (55%).


2021 ◽  
Author(s):  
Nawel Jr ◽  
Thabet Makhlouf ◽  
Gerard Delahay ◽  
Hassib Tounsi

Abstract Copper loaded η-alumina catalysts with different copper contents have been prepared by impregnation/evaporation method. The catalysts were characterized by XRD, FTIR, BET, UV–vis, H2-TPR and evaluated in the selective catalytic reduction of NO by NH3 and in the selective catalytic oxidation of NH3. The characterization techniques showed that the impregnation/evaporation method permits to obtain highly dispersed copper oxide species on the η-alumina surface when low amount of copper is used (1wt. % and 2 wt.%). The wet impregnation method made it possible to reach a well dispersion of the copper species on the surface of the alumina for the low copper contents Cu(1)-Al2O3 and Cu(2)-Al2O3. The latter justifies the similar behavior of Cu(1)-Al2O3) and Cu(2)-Al2O3 in the selective catalytic oxidation of NH3 where these catalysts exhibit a conversion of NH3 to N2 of the order of 100% at T > 500°C.


Sign in / Sign up

Export Citation Format

Share Document