scholarly journals Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease

Author(s):  
Marianna Crispino ◽  
Floriana Volpicelli ◽  
Carla Perrone-Capano

Our knowledge on the plastic functions of the serotonin (5-HT) receptor subtype 7 (5-HT7R) in the brain physiology and pathology considerably advanced in the last few years. A wealth of data show that the 5-HT7R is a key player in the establishment and remodeling of neuronal cytoarchitecture during development and in the mature brain, and its dysfunction is linked to neuropsychiatric and neurodevelopmental diseases. The involvement of this receptor in synaptic plasticity is further demonstrated by data showing that its activation allows to rescue long term potentiation (LTP) and long term depression (LTD) deficits in various animal models of neurodevelopmental diseases. In addition, it is becoming clear that the 5-HT7R is involved in inflammatory intestinal diseases, possibly playing a role in the gut-brain axis, and modulates the function of immune cells. In this review, we will mainly focus on recent findings on this receptor’s role in the structural and synaptic plasticity of the mammalian brain, although we will also illustrate novel aspects highlighted in gut and immune system.

2020 ◽  
Vol 21 (2) ◽  
pp. 505 ◽  
Author(s):  
Marianna Crispino ◽  
Floriana Volpicelli ◽  
Carla Perrone-Capano

Our knowledge on the plastic functions of the serotonin (5-HT) receptor subtype 7 (5-HT7R) in the brain physiology and pathology have advanced considerably in recent years. A wealth of data show that 5-HT7R is a key player in the establishment and remodeling of neuronal cytoarchitecture during development and in the mature brain, and its dysfunction is linked to neuropsychiatric and neurodevelopmental diseases. The involvement of this receptor in synaptic plasticity is further demonstrated by data showing that its activation allows the rescue of long-term potentiation (LTP) and long-term depression (LTD) deficits in various animal models of neurodevelopmental diseases. In addition, it is becoming clear that the 5-HT7R is involved in inflammatory intestinal diseases, modulates the function of immune cells, and is likely to play a role in the gut-brain axis. In this review, we will mainly focus on recent findings on this receptor’s role in the structural and synaptic plasticity of the mammalian brain, although we will also illustrate novel aspects highlighted in gastrointestinal (GI) tract and immune system.


2003 ◽  
Vol 358 (1432) ◽  
pp. 715-720 ◽  
Author(s):  
Fabrice Duprat ◽  
Michael Daw ◽  
Wonil Lim ◽  
Graham Collingridge ◽  
John Isaac

AMPA-type glutamate receptors mediate most fast excitatory synaptic transmissions in the mammalian brain. They are critically involved in the expression of long-term potentiation and long-term depression, forms of synaptic plasticity that are thought to underlie learning and memory. A number of synaptic proteins have been identified that interact with the intracellular C-termini of AMPA receptor subunits. Here, we review recent studies and present new experimental data on the roles of these interacting proteins in regulating the AMPA receptor function during basal synaptic transmission and plasticity.


1999 ◽  
Vol 77 (9) ◽  
pp. 735-737 ◽  
Author(s):  
John TR Isaac ◽  
Roger A Nicoll ◽  
Robert C Malenka

Excitatory synaptic transmission in the mammalian brain is mediated primarily by α-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors that are thought to be co-localized at individual synapses. However, recent electrophysiological and anatomical data suggest that the synaptic localization of AMPA and NMDA receptors may be independently regulated by neural activity. These data are reviewed here and the implications of these findings for the mechanisms underlying synaptic plasticity are discussed.Key words: glutamate receptor, long-term potentiation (LTP), synaptic plasticity, hippocampus, cortex.


1995 ◽  
Vol 73 (9) ◽  
pp. 1312-1322 ◽  
Author(s):  
T. Kamishita ◽  
H. Haruta ◽  
N. Torii ◽  
T. Tsumoto ◽  
T. P. Hicks

Two forms of use-dependent synaptic plasticity, called long-term potentiation (LTP) and long-term depression (LTD), can be elicited in the visual cortex following different paradigms of electrophysiological stimulation. These neurobiological phenomena often are considered as necessary components of models for the alteration in function of the nervous system that must occur at some level for the establishment and (or) maintenance of memory engrams, for learning processes, or for the consolidation of active neural connections and regression of inactive contacts in the developing brain. It has been postulated that for LTP and LTD to be produced in the hippocampus, activation of a particular subtype of excitatory amino acid receptor, the metabotropic receptor, is a critical requirement. Only recently has it become possible to test this hypothesis directly, as a new compound, (±)-α-methyl-4-carboxyphenylglycine (MCPG), has been introduced and the suggestion made that it selectively antagonizes the metabotropic receptor. This substance has been tested in the present study on responses recorded from slices of rat visual cortex and has been found both to block the activation of the metabotropic receptor and to interfere selectively with the form of synaptic plasticity called LTD. It thus appears from the experiments reported in this paper as though the metabotropic receptor subtype that is blocked by MCPG is required for the expression of LTD but not for the expression of LTP, in the visual cortex of adult rats.Key words: excitatory amino acids, long-term potentiation, long-term depression, visual cortex, (±)-α-methyl-4-carboxyphenylglycine (MCPG).


2003 ◽  
Vol 358 (1432) ◽  
pp. 757-763 ◽  
Author(s):  
Christopher Pittenger ◽  
Eric R. Kandel

Long-term synaptic plasticity is thought to underlie many forms of long-lasting memory. Long-lasting plasticity has been most extensively studied in the marine snail Aplysia and in the mammalian hippocampus, where Bliss and Lømo first described long-term potentiation 30 years ago. The molecular mechanisms of plasticity in these two systems have proven to have many similarities. Here, we briefly describe some of these areas of overlap. We then summarize recent advances in our understanding of the mechanisms of long-lasting synaptic facilitation in Aplysia and suggest that these may prove fruitful areas for future investigation in the mammalian hippocampus and at other synapses in the mammalian brain.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2006 ◽  
Vol 16 ◽  
pp. S52
Author(s):  
S. Salomon ◽  
Y. Nachum-Biala ◽  
Y. Bogush ◽  
M. Lineal ◽  
H. Matzner ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yire Jeong ◽  
Hye-Yeon Cho ◽  
Mujun Kim ◽  
Jung-Pyo Oh ◽  
Min Soo Kang ◽  
...  

AbstractMemory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.


Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 40 ◽  
Author(s):  
Joongkyu Park

Synaptic plasticity has been considered a key mechanism underlying many brain functions including learning, memory, and drug addiction. An increase or decrease in synaptic activity of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complex mediates the phenomena as shown in the cellular models of synaptic plasticity, long-term potentiation (LTP), and depression (LTD). In particular, protein phosphorylation shares the spotlight in expressing the synaptic plasticity. This review summarizes the studies on phosphorylation of the AMPAR pore-forming subunits and auxiliary proteins including transmembrane AMPA receptor regulatory proteins (TARPs) and discusses its role in synaptic plasticity.


Sign in / Sign up

Export Citation Format

Share Document