scholarly journals Submicron Sized Nb Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of All Solid-State Lithium Battery

Author(s):  
Yan Ji ◽  
Cankai Zhou ◽  
Feng Lin ◽  
Bingjing Li ◽  
Feifan Yang ◽  
...  

The garnet Li7La3Zr2O12 (LLZO) has been widely investigated because of its high conductivity, wide electrochemical window and chemical stability to lithium metal. However, the usual preparation process of LLZO requires a long time of high-temperature sintering and a lot of mother powders against the lithium evaporation. The submicron Li6.6La3Zr1.6Nb0.4O12 (LLZNO) powders are prepared by conventional solid-state reaction method and attrition milling process, which are stable cubic phase and have high sintering activity, and Li stoichiometric LLZNO ceramics are obtained by sintering at a relative lower temperature or for a short time by using these powders which are difficult to control under high sintering temperature and long sintering time. The particle size distribution, phase structure, microstructure, distribution of element, total ionic conductivity, relative density and activation energy of submicron LLZNO powders and LLZNO ceramics are tested and analyzed by laser diffraction particle size analyzer, XRD, SEM, EIS and Archimedean method. The total ionic conductivity of sample sintered at 1200 °C for 30 min is 5.09 × 10-4 S·cm-1, the activation energy is 0.311 eV, and the relative density is 87.3%, and sintered at 1150 °C for 60 min total ionic conductivity is 3.49 × 10-4 S·cm-1, the activation energy is 0.316 eV, and the relative density is 90.4%. At the same time, all-solid-state batteries are assembled with LiMn2O4 as positive electrode and submicron LLZNO powders as solid state electrolyte. After 50 cycles, the discharge specific capacity is 105.5 mAh/g and the columbic efficiency is above 95%.

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 560 ◽  
Author(s):  
Yan Ji ◽  
Cankai Zhou ◽  
Feng Lin ◽  
Bingjing Li ◽  
Feifan Yang ◽  
...  

The garnet Li7La3Zr2O12 (LLZO) has been widely investigated because of its high conductivity, wide electrochemical window, and chemical stability with regards to lithium metal. However, the usual preparation process of LLZO requires high-temperature sintering for a long time and a lot of mother powder to compensate for lithium evaporation. In this study submicron Li6.6La3Zr1.6Nb0.4O12 (LLZNO) powder―which has a stable cubic phase and high sintering activity―was prepared using the conventional solid-state reaction and the attrition milling process, and Li stoichiometric LLZNO ceramics were obtained by sintering this powder―which is difficult to control under high sintering temperatures and when sintered for a long time―at a relatively low temperature or for a short amount of time. The particle-size distribution, phase structure, microstructure, distribution of elements, total ionic conductivity, relative density, and activation energy of the submicron LLZNO powder and the LLZNO ceramics were tested and analyzed using laser diffraction particle-size analyzer (LD), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), and the Archimedean method. The total ionic conductivity of samples sintered at 1200 °C for 30 min was 5.09 × 10−4 S·cm−1, the activation energy was 0.311 eV, and the relative density was 87.3%. When the samples were sintered at 1150 °C for 60 min the total ionic conductivity was 3.49 × 10−4 S·cm−1, the activation energy was 0.316 eV, and the relative density was 90.4%. At the same time, quasi-solid-state batteries were assembled with LiMn2O4 as the positive electrode and submicron LLZNO powder as the solid-state electrolyte. After 50 cycles, the discharge specific capacity was 105.5 mAh/g and the columbic efficiency was above 95%.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 426
Author(s):  
Zongkai Yan ◽  
Yu Song ◽  
Shuai Wu ◽  
Yongmin Wu ◽  
Shipai Song ◽  
...  

A solid-state electrolyte with an ionic conductivity comparable to that of a liquid electrolyte is demanded of all-solid-state lithium-ion batteries. Li7La3Zr2O12 (LLZO) is considered to be a promising candidate due to its good thermal stability, high ionic conductivity, and wide electrochemical window. However, the synthesis of a stable cubic-phase LLZO thin film with enhanced densification at a relatively low thermal treatment temperature is yet to be developed. Indium is predicted to be a possible dopant to stabilize the cubic-phase LLZO (c-LLZO). Herein, via a nanolayer stacking process, a LLZO–Li2CO3–In2O3 multilayer solid electrolyte precursor was obtained. After thermal annealing at different temperatures, the effects of indium doping on the formation of c-LLZO and the ionic conductivities of the prepared LLZO–LZO thin film were systematically investigated. The highest ionic conductivity of 9.6 × 10−6 S·cm–1 was obtained at an annealing temperature of 800 °C because the incorporation of indium promoted the formation of c-LLZO and the highly conductive LLZO–LZO interfaces. At the end, a model of LLZO–LZO interface-enhancing ionic conductivity was proposed. This work provides a new approach for the development of low-temperature LLZO-based, solid-state thin-film batteries.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bambar Davaasuren ◽  
Qianli Ma ◽  
Alexandra von der Heiden ◽  
Frank Tietz

Abstract Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.


1989 ◽  
Vol 169 ◽  
Author(s):  
E. A. Cooper ◽  
T. O. Mason ◽  
U. Balachandran ◽  
M. L. Kullberg

AbstractImpedance spectra (5Hz ‐ 13MHz) were collected during the solid state reaction of Yba2Cu2O6+y from large monosized CuO particles imbedded in a finely divided Y2 O3 /BaCO3 matrix. No particle size effect was observed, but a large temperature effect was observed corresponding to an activation energy of approximately 1.8eV (175kJ/mol) over the range 700‐900°C.


2013 ◽  
Vol 795 ◽  
pp. 640-643 ◽  
Author(s):  
Rozana A.M. Osman ◽  
Mohd Sobri Idris

Fresnoite with composition Ba2TiSi2O8 (B2TS2) was first found in 1965, adopting a non-centrosymmetric structure. It also reported to crystallize in a tetragonal unit cell with a=8.52Å and c=5.210Å leading to some possible application as hydrophone, transducer and second harmonic generation and low temperature co-fired ceramics (LTCC). B2TS2 were synthesized by conventional solid state reaction. Phase pure B2TS2 was obtained after heating the pellets at a final sintering temperature of 1230 °C in air at 92 h. Study found that Fresnoite B2TS2 is a type of materials which are not ferroelectric and instead show perfect dielectric insulator behaviour with resistance >106Ωcm at temperatures below 750°C and also shows nonideal debye respone. The activation energy for conduction of B2TS2 samples is very high, indicating that these materials are highly insulating.


2019 ◽  
Vol 55 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
A. Jalalian-Khakshour ◽  
C. O. Phillips ◽  
L. Jackson ◽  
T. O. Dunlop ◽  
S. Margadonna ◽  
...  

Abstract In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1306
Author(s):  
Shiqi Wang ◽  
Chun Wei ◽  
Wenwen Ding ◽  
Linmin Zou ◽  
Yongyang Gong ◽  
...  

A high-voltage electrolyte can match high-voltage positive electrode material to fully exert its capacity. In this research, a sulfolane plasticized polymer electrolyte was prepared by in situ photocuring. First, the effect of the sulfolane content on the ionic conductivity of the gel polymer electrolyte was investigated. Results showed that the ionic conductivity variation trend was in good agreement with the exponential function model for curve fitting. Second, the activation energy was calculated from the results of the variable temperature conductivity tests. The activation energy was inversely proportional to the sulfolane content. For the sulfolane content of 80 wt. % in gel polymer electrolyte (GPE)-80 (19.5 kJ/mol), the activation energy was close to conventional liquid electrolyte (9.5 kJ/mol), and the conductivity and electrochemical window were 0.64 mS/cm and 5.86 V, respectively. The battery cycle performance test showed that the initial specific discharge capacities of GPE-80 and liquid electrolyte were 176.8 and 148.3 mAh/g, respectively. After 80 cycles, the discharge capacities of GPE-80 and liquid electrolyte were 115.8 and 41.1 mAh/g, and the capacity retention rates were 65.5% and 27.7%, respectively; indicating that GPE-80 has a better specific discharge capacity and cycling performance than the liquid electrolyte. SEM images indicated that GPE-80 can suppress the growth of lithium dendrites. The EDS test showed that GPE-80 can inhibit the dissolution of metal ions in the cathode material.


2013 ◽  
Vol 829 ◽  
pp. 683-687 ◽  
Author(s):  
Ebrahim Mostafavi ◽  
Abolghasem Ataie ◽  
Mostafa Ahmadzadeh

Multiferroic bismuth ferrite, BiFeO3, was synthesized via conventional solid-state reaction method using Bi2O3, Fe2O3 as starting materials. Effects of Bi2O3/Fe2O3 molar ratio and calcination temperature on the phase composition, morphology and magnetic properties of produced powders were systematically studied using XRD, FESEM/EDS and VSM techniques, respectively. The results revealed that BiFeO3 phase with rhombohedral R3c structure with a mean particle size of 40 nm was formed in the sample processed with a Bi2O3/Fe2O3 molar ratio of 1:1 after calcination at 800 °C. Rietveld analysis which was applied to the x-ray diffraction data via MAUD software indicated high purity of 95%wt for the above sample. Deviation from the stoichiometric molar ratio (Bi2O3/Fe2O3: 0.9, 1.1, 1.2) yielded higher content of the intermediate phases of Bi2Fe4O9 and Bi25FeO40. FESEM studies showed that the mean particle size was increased from 40 to 62 nm by increasing calcination temperature from 800 to 850 °C. VSM results for 1:1 molar ratio samples indicated that increasing the calcination temperature from 800 to 850 °C increased saturation magnetization (Ms) from 0.087 to 0.116 emu/g and also coercive field (Hc) from 60 to 100 Oe.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1979
Author(s):  
Zekun Deng ◽  
Zhenyang Zheng ◽  
Wenhong Ruan ◽  
Mingqiu Zhang

With a higher theoretical specific capacity (1675 mAh g−1) and energy density (2600 Wh kg−1), the lithium-sulfur (Li-S) battery is considered as a promising candidate for a next-generation energy storage device. However, the shuttle effect of polysulfides as well as the large interfacial impedance between brittle solid electrolyte and electrodes lead to the capacity of the Li-S battery decaying rapidly, which limits the practical commercial applications of the Li-S battery. Herein, we reported a facile in situ ultraviolet (UV) curing method to prepare a flexible quasi-solid-state composite electrolyte (QSSCE) of poly(propylene glycol)-co-pentaerythritol triacrylate/Li1.5Al0.5Ge1.5(PO4)3 (PPG-co-PETA/LAGP). By combining the high Li-ion conductivity and mechanical strength of inorganic NASICON-structure LAGP and good flexibility of the crosslinked PPG-co-PETA with nanopore structure, the flexible QSSCE with 66.85 wt% LAGP exhibited high Li-ion conductivity of 5.95 × 10−3 S cm−1 at 25 °C, Li-ion transference number of 0.83 and wide electrochemical window of ~5.0 V (vs. Li/Li+). In addition, the application of QSSCE in the Li-S battery could suppress the shuttle effect of polysulfides effectively, thus the Li-S battery possessed the excellent electrochemical cyclic performance, showing the first-cycle discharge-specific capacity of 1508.1 mAh g−1, the capacity retention of 73.6% after 200 cycles with 0.25 C at 25 °C and good rate performance.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6946
Author(s):  
Bin Zhao ◽  
Qi Wang ◽  
Boheng Yuan ◽  
Yafei Lu ◽  
Xiaogang Han

Solid-state plastic crystal electrolytes (SPCEs) have attracted much attention due to their high ionic conductivity at room temperature and polymer-like plasticity. Herein, we made a LiFePO4||Li solid state battery based on SPCEs. A SPCE film is made up of glass fiber, succinonitrile (SN), lithium bis (triflu-romethanesulphonyl) imid (LiTFSI), and LiNO3. Glass fiber is introduced to improve the mechanical property, and LiNO3 served as an additive to stabilize electrolyte/Li interface. The SPCE film delivers a high ionic conductivity of 7.3 × 10−4 S cm−1 at room temperature and has excellent stability with Li-metal anode. SPCE is also infused into cathode electrode and used as the interface with cathode particles, which can access a large interface contact area and deform reversibly with volume change. The LiFePO4||Li solid state battery based on SPCE can work well at ambient temperature, which shows a high initial specific capacity of 121.4 mAh g−1 and has 86.9% retention after 90 cycles at 0.5 C.


Sign in / Sign up

Export Citation Format

Share Document