scholarly journals Submicron-Sized Nb-Doped Lithium Garnet for High Ionic Conductivity Solid Electrolyte and Performance of Quasi-Solid-State Lithium Battery

Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 560 ◽  
Author(s):  
Yan Ji ◽  
Cankai Zhou ◽  
Feng Lin ◽  
Bingjing Li ◽  
Feifan Yang ◽  
...  

The garnet Li7La3Zr2O12 (LLZO) has been widely investigated because of its high conductivity, wide electrochemical window, and chemical stability with regards to lithium metal. However, the usual preparation process of LLZO requires high-temperature sintering for a long time and a lot of mother powder to compensate for lithium evaporation. In this study submicron Li6.6La3Zr1.6Nb0.4O12 (LLZNO) powder―which has a stable cubic phase and high sintering activity―was prepared using the conventional solid-state reaction and the attrition milling process, and Li stoichiometric LLZNO ceramics were obtained by sintering this powder―which is difficult to control under high sintering temperatures and when sintered for a long time―at a relatively low temperature or for a short amount of time. The particle-size distribution, phase structure, microstructure, distribution of elements, total ionic conductivity, relative density, and activation energy of the submicron LLZNO powder and the LLZNO ceramics were tested and analyzed using laser diffraction particle-size analyzer (LD), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), and the Archimedean method. The total ionic conductivity of samples sintered at 1200 °C for 30 min was 5.09 × 10−4 S·cm−1, the activation energy was 0.311 eV, and the relative density was 87.3%. When the samples were sintered at 1150 °C for 60 min the total ionic conductivity was 3.49 × 10−4 S·cm−1, the activation energy was 0.316 eV, and the relative density was 90.4%. At the same time, quasi-solid-state batteries were assembled with LiMn2O4 as the positive electrode and submicron LLZNO powder as the solid-state electrolyte. After 50 cycles, the discharge specific capacity was 105.5 mAh/g and the columbic efficiency was above 95%.

Author(s):  
Yan Ji ◽  
Cankai Zhou ◽  
Feng Lin ◽  
Bingjing Li ◽  
Feifan Yang ◽  
...  

The garnet Li7La3Zr2O12 (LLZO) has been widely investigated because of its high conductivity, wide electrochemical window and chemical stability to lithium metal. However, the usual preparation process of LLZO requires a long time of high-temperature sintering and a lot of mother powders against the lithium evaporation. The submicron Li6.6La3Zr1.6Nb0.4O12 (LLZNO) powders are prepared by conventional solid-state reaction method and attrition milling process, which are stable cubic phase and have high sintering activity, and Li stoichiometric LLZNO ceramics are obtained by sintering at a relative lower temperature or for a short time by using these powders which are difficult to control under high sintering temperature and long sintering time. The particle size distribution, phase structure, microstructure, distribution of element, total ionic conductivity, relative density and activation energy of submicron LLZNO powders and LLZNO ceramics are tested and analyzed by laser diffraction particle size analyzer, XRD, SEM, EIS and Archimedean method. The total ionic conductivity of sample sintered at 1200 °C for 30 min is 5.09 × 10-4 S·cm-1, the activation energy is 0.311 eV, and the relative density is 87.3%, and sintered at 1150 °C for 60 min total ionic conductivity is 3.49 × 10-4 S·cm-1, the activation energy is 0.316 eV, and the relative density is 90.4%. At the same time, all-solid-state batteries are assembled with LiMn2O4 as positive electrode and submicron LLZNO powders as solid state electrolyte. After 50 cycles, the discharge specific capacity is 105.5 mAh/g and the columbic efficiency is above 95%.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 426
Author(s):  
Zongkai Yan ◽  
Yu Song ◽  
Shuai Wu ◽  
Yongmin Wu ◽  
Shipai Song ◽  
...  

A solid-state electrolyte with an ionic conductivity comparable to that of a liquid electrolyte is demanded of all-solid-state lithium-ion batteries. Li7La3Zr2O12 (LLZO) is considered to be a promising candidate due to its good thermal stability, high ionic conductivity, and wide electrochemical window. However, the synthesis of a stable cubic-phase LLZO thin film with enhanced densification at a relatively low thermal treatment temperature is yet to be developed. Indium is predicted to be a possible dopant to stabilize the cubic-phase LLZO (c-LLZO). Herein, via a nanolayer stacking process, a LLZO–Li2CO3–In2O3 multilayer solid electrolyte precursor was obtained. After thermal annealing at different temperatures, the effects of indium doping on the formation of c-LLZO and the ionic conductivities of the prepared LLZO–LZO thin film were systematically investigated. The highest ionic conductivity of 9.6 × 10−6 S·cm–1 was obtained at an annealing temperature of 800 °C because the incorporation of indium promoted the formation of c-LLZO and the highly conductive LLZO–LZO interfaces. At the end, a model of LLZO–LZO interface-enhancing ionic conductivity was proposed. This work provides a new approach for the development of low-temperature LLZO-based, solid-state thin-film batteries.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 421-436
Author(s):  
Aamir Iqbal Waidha ◽  
Vanita Vanita ◽  
Oliver Clemens

Composite electrolytes containing lithium ion conducting polymer matrix and ceramic filler are promising solid-state electrolytes for all solid-state lithium ion batteries due to their wide electrochemical stability window, high lithium ion conductivity and low electrode/electrolyte interfacial resistance. In this study, we report on the polymer infiltration of porous thin films of aluminum-doped cubic garnet fabricated via a combination of nebulized spray pyrolysis and spin coating with subsequent post annealing at 1173 K. This method offers a simple and easy route for the fabrication of a three-dimensional porous garnet network with a thickness in the range of 50 to 100 µm, which could be used as the ceramic backbone providing a continuous pathway for lithium ion transport in composite electrolytes. The porous microstructure of the fabricated thin films is confirmed via scanning electron microscopy. Ionic conductivity of the pristine films is determined via electrochemical impedance spectroscopy. We show that annealing times have a significant impact on the ionic conductivity of the films. The subsequent polymer infiltration of the porous garnet films shows a maximum ionic conductivity of 5.3 × 10−7 S cm−1 at 298 K, which is six orders of magnitude higher than the pristine porous garnet film.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bambar Davaasuren ◽  
Qianli Ma ◽  
Alexandra von der Heiden ◽  
Frank Tietz

Abstract Li1.5Al0.5Ti1.5(PO4)3 (LATP) powders were prepared from different NO x -free precursors using an aqueous-based solution-assisted solid-state reaction (SA-SSR). The sintering behavior, phase formation, microstructure and ionic conductivity of the powders were explored as a function of sintering temperature. The powders showed a relatively narrow temperature windows in which shrinkage occurred. Relative densities of 95% were reached upon heating between 900 and 960 °C. Depending on the morphological features of the primary particles, either homogeneous and intact microstructures with fine grains of about <2 µm in size or a broad grain size distribution, micro-cracks and grain cleavages were obtained, indicating the instability of the microstructure. Consequently, the ceramics with a homogeneous microstructure possessed a maximum total ionic conductivity of 0.67 mS cm−1, whereas other ceramics reached only 0.58 mS cm−1 and 0.21 mS cm−1.


1989 ◽  
Vol 169 ◽  
Author(s):  
E. A. Cooper ◽  
T. O. Mason ◽  
U. Balachandran ◽  
M. L. Kullberg

AbstractImpedance spectra (5Hz ‐ 13MHz) were collected during the solid state reaction of Yba2Cu2O6+y from large monosized CuO particles imbedded in a finely divided Y2 O3 /BaCO3 matrix. No particle size effect was observed, but a large temperature effect was observed corresponding to an activation energy of approximately 1.8eV (175kJ/mol) over the range 700‐900°C.


2019 ◽  
Vol 55 (6) ◽  
pp. 2291-2302 ◽  
Author(s):  
A. Jalalian-Khakshour ◽  
C. O. Phillips ◽  
L. Jackson ◽  
T. O. Dunlop ◽  
S. Margadonna ◽  
...  

Abstract In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 987
Author(s):  
Jin Shi ◽  
Yongfei Hong ◽  
Chengfei Zhu

The beta-Al2O3 solid electrolyte doped with Chromium was synthesized via a citrate-nitrate combustion method, which started with NaNO3, LiNO3, Cr(NO3)3·9H2O, and Al(NO3)3·9H2O as the raw materials in this paper. The thermal behavior analysis, structure, and ionic conductivity of the beta-Al2O3 solid electrolyte were studied by the thermogravimetry/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Meanwhile, the relative density and bending strength of the samples were also measured. The results showed that with the appropriate Chromium doping, the calcining temperature of the precursor powders was only 1100 °C, the β″-Al2O3 phase content, bending strength, relative density, and ionic conductivity were all improved with a compact and uniform cross section micrograph. The optimized sample contained 94% of β″-Al2O3 phase and exhibited a relative density up to 98.13% of the theoretical density. In addition, it showed a good bending strength (215 MPa) and a satisficed ionic conductivity (0.110 S cm−1 at 350 °C).


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1306
Author(s):  
Shiqi Wang ◽  
Chun Wei ◽  
Wenwen Ding ◽  
Linmin Zou ◽  
Yongyang Gong ◽  
...  

A high-voltage electrolyte can match high-voltage positive electrode material to fully exert its capacity. In this research, a sulfolane plasticized polymer electrolyte was prepared by in situ photocuring. First, the effect of the sulfolane content on the ionic conductivity of the gel polymer electrolyte was investigated. Results showed that the ionic conductivity variation trend was in good agreement with the exponential function model for curve fitting. Second, the activation energy was calculated from the results of the variable temperature conductivity tests. The activation energy was inversely proportional to the sulfolane content. For the sulfolane content of 80 wt. % in gel polymer electrolyte (GPE)-80 (19.5 kJ/mol), the activation energy was close to conventional liquid electrolyte (9.5 kJ/mol), and the conductivity and electrochemical window were 0.64 mS/cm and 5.86 V, respectively. The battery cycle performance test showed that the initial specific discharge capacities of GPE-80 and liquid electrolyte were 176.8 and 148.3 mAh/g, respectively. After 80 cycles, the discharge capacities of GPE-80 and liquid electrolyte were 115.8 and 41.1 mAh/g, and the capacity retention rates were 65.5% and 27.7%, respectively; indicating that GPE-80 has a better specific discharge capacity and cycling performance than the liquid electrolyte. SEM images indicated that GPE-80 can suppress the growth of lithium dendrites. The EDS test showed that GPE-80 can inhibit the dissolution of metal ions in the cathode material.


2017 ◽  
Vol 41 (21) ◽  
pp. 13096-13103 ◽  
Author(s):  
Yang Li ◽  
Ka Wai Wong ◽  
Qianqian Dou ◽  
Wei Zhang ◽  
Lixiang Wang ◽  
...  

The highly elastic and flexible solid-state polymer electrolyte exhibits enhanced ionic conductivity, an enhanced lithium ion transference number and a wide electrochemical window.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 721 ◽  
Author(s):  
Zhencai Dong ◽  
Chao Xu ◽  
Yongmin Wu ◽  
Weiping Tang ◽  
Shufeng Song ◽  
...  

Garnet Li7La3Zr2O12 is one of the most promising solid electrolytes used for solid-state lithium batteries. However, low ionic conductivity impedes its application. Herein, we report Ta-doping garnets with compositions of Li7-xLa3Zr2-xTaxO12 (0.1 ≤ x ≤ 0.75) obtained by solid-state reaction and free sintering, which was facilitated by graphene oxide (GO). Furthermore, to optimize Li6.6La3Zr1.6Ta0.4O12, Mg2+ was select as a second dopant. The dual substitution of Ta5+ for Zr4+ and Mg2+ for Li+ with a composition of Li6.5Mg0.05La3Zr1.6Ta0.4O12 showed an enhanced total ionic conductivity of 6.1 × 10−4 S cm−1 at room temperature. Additionally, spark plasma sintering (SPS) was applied to further densify the garnets and enhance their ionic conductivities. Both SPS specimens present higher conductivities than those produced by the conventional free sintering. At room temperature, the highest ionic conductivity of Li6.5Mg0.05La3Zr1.6Ta0.4O12 sintered at 1000 °C is 8.8 × 10−4 S cm−1, and that of Li6.6La3Zr1.6Ta0.4O12 sintered at 1050 °C is 1.18 × 10−3 S cm−1.


Sign in / Sign up

Export Citation Format

Share Document