scholarly journals Potential Natural Compounds for Preventing SARS-CoV-2 (2019-nCoV) Infection

Author(s):  
Hansen Chen ◽  
Qiaohui Du

SARS-CoV-2 (2019-nCoV), a novel coronavirus, caused the pneumonia outbreak in China and continue to expand. The host receptor for 2019-nCoV Angiotensin-converting enzyme 2 (ACE2), is the same as the host receptor for SARS-CoV. Targeting ACE2 holds the promise for preventing and inhibiting 2019-nCoV infection. Chinese Medicine herbs could be a valuable pool for identifying active compounds for treating infection of 2019-nCoV. In this study, we summarize several active compounds, including baicalin, Scutellarin, Hesperetin, Nicotianamine and glycyrrhizin that could have potential anti-2019-nCoV effects. We conduct molecular docking to predict their capacity for binding ACE2, which may prevent the 2019-nCoV infection. We propose that these selected compounds worth further investigation for preventing 2019-nCoV.

Author(s):  
Bui Thanh Tung ◽  
Phạm Hong Minh ◽  
Nguyen Nhu Son ◽  
Pham The Hai

This study uses an in silico screening docking model to evaluate the ACE2 inhibitory activity of natural compounds and drugs. The study collected 49 compounds and evaluated the ACE2 inhibitory effect in silico. The study results show that 11 out of the 49 compounds had stronger inhibitory activity on ACE2 than MLN-4760. Lipinski’s rule of five criteria and predictive pharmacokinetic-toxicity analysis show that eight compounds including quercetin, galangin, quisinostat, fluprofylline, spirofylline, RS 504393, TNP and GNF-5 had drug-likeness. These compounds could be potential drug for the Covid-19 treatment. Keywords SARS-CoV-2S, Covid-19, ACE2, molecular docking, in silico. References [[1] C. Wang, P.W. Horby, F.G. Hayden, G.F. Gao. A novel coronavirus outbreak of global health concern. The Lancet 395(10223) (2020) 470.[2] WHO. WHO Coronavirus Disease (COVID-19) Dashboard. WHO, 2020.[3] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet 395(10223) (2020) 507.[4] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases 94 (2020) 91.[5] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet 395(10224) (2020) 565.[6] R. Hilgenfeld. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS journal 281(18) (2014) 4085.[7] D. Wrapp, N. Wang, K.S. Corbett, J.A. Goldsmith, C.L. Hsieh, O. Abiona, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY) 367(6483) (2020) 1260.[8] P.A. Rota, M.S. Oberste, S.S. Monroe, W.A. Nix, R. Campagnoli, J.P. Icenogle, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science (New York, NY) 300(5624) (2003) 1394.[9] M. Donoghue, F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research 87(5) (2000) E1.[10] H. Zhang, Z. Kang, H. Gong, D. Xu, J. Wang, Z. Li, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes. bioRxiv (2020) 2020.01.30.927806.[11] Y. Zhao, Z. Zhao, Y. Wang, Y. Zhou, Y. Ma, W. Zuo. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. bioRxiv (2020) 2020.01.26.919985.[12] E.I. Bahbah, A. Negida, M.S. Nabet. Purposing Saikosaponins for the treatment of COVID-19. Med Hypotheses 140 (2020) 109782.[13] I.W. Cheung, S. Nakayama, M.N. Hsu, A.G. Samaranayaka, E.C. Li-Chan. Angiotensin-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of agricultural and food chemistry 57(19) (2009) 9234.[14] T. Joshi, T. Joshi, P. Sharma, S. Mathpal, H. Pundir, V. Bhatt, et al. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European review for medical and pharmacological sciences 24(8) (2020) 4529.[15] S. Shahid, A. Kausar, M. Khalid, S. Tewari, T. Alghassab, T. Acar, et al. analysis of binding properties of angiotensin-converting enzyme 2 through in silico molecular docking, 2018.[16] K. Teralı, B. Baddal, H.O. Gülcan. Prioritizing potential ACE2 inhibitors in the COVID-19 pandemic: Insights from a molecular mechanics-assisted structure-based virtual screening experiment. J Mol Graph Model 100 (2020) 107697.[17] M. Muchtaridi, M. Fauzi, N.K. Khairul Ikram, A. Mohd Gazzali, H.A. Wahab. Natural Flavonoids as Potential Angiotensin-Converting Enzyme 2 Inhibitors for Anti-SARS-CoV-2. Molecules 25(17) (2020) 3980.[18] M.J. Huentelman, J. Zubcevic, J.A. Hernández Prada, X. Xiao, D.S. Dimitrov, M.K. Raizada, et al. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension (Dallas, Tex : 1979) 44(6) (2004) 903.[19] S. Choudhary, Y.S. Malik, S. Tomar. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in silico Structure-Based Virtual Screening Approach. Front Immunol 11((2020) 1664.[20] C.A. Lipinski. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technologies 1(4) (2004) 337.[21] B. Jayaram, T. Singh, G. Mukherjee, A. Mathur, S. Shekhar, V. Shekhar, Eds. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. Proceedings of the BMC bioinformatics; 2012. Springer (Year).[22] D.E. Pires, T.L. Blundell, D.B. Ascher. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of medicinal chemistry 58(9) (2015) 4066.[23] P. Towler, B. Staker, S.G. Prasad, S. Menon, J. Tang, T. Parsons, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. The Journal of biological chemistry 279(17) (2004) 17996.[24] N.A. Dales, A.E. Gould, J.A. Brown, E.F. Calderwood, B. Guan, C.A. Minor, et al. Substrate-based design of the first class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. Journal of the American Chemical Society 124(40) (2002) 11852.[25] P. Pandey, J.S. Rane, A. Chatterjee, A. Kumar, R. Khan, A. Prakash, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. Journal of Biomolecular Structure and Dynamics (2020) 1.[26] C.A. Lipinski. Lead- and drug-like compounds: the rule-of-five revolution. Drug discovery today Technologies 1(4) (2004) 337.[27] R.O. Barros, F.L. Junior, W.S. Pereira, N.M. Oliveira, R.M. Ramos. Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. Journal of Proteome Research (2020).  


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Sally Badawi ◽  
Bassam R. Ali

AbstractWith the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2–based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.


TH Open ◽  
2020 ◽  
Vol 04 (02) ◽  
pp. e138-e144 ◽  
Author(s):  
Wolfgang Miesbach

AbstractThe activated renin–angiotensin system induces a prothrombotic state resulting from the imbalance between coagulation and fibrinolysis. Angiotensin II is the central effector molecule of the activated renin–angiotensin system and is degraded by the angiotensin-converting enzyme 2 to angiotensin (1–7). The novel coronavirus infection (classified as COVID-19) is caused by the new coronavirus SARS-CoV-2 and is characterized by an exaggerated inflammatory response that can lead to severe manifestations such as acute respiratory distress syndrome, sepsis, and death in a proportion of patients, mostly elderly patients with preexisting comorbidities. SARS-CoV-2 uses the angiotensin-converting enzyme 2 receptor to enter the target cells, resulting in activation of the renin–angiotensin system. After downregulating the angiotensin-converting enzyme 2, the vasoconstrictor angiotensin II is increasingly produced and its counterregulating molecules angiotensin (1–7) reduced. Angiotensin II increases thrombin formation and impairs fibrinolysis. Elevated levels were strongly associated with viral load and lung injury in patients with severe COVID-19. Therefore, the complex clinical picture of patients with severe complications of COVID-19 is triggered by the various effects of highly expressed angiotensin II on vasculopathy, coagulopathy, and inflammation. Future treatment options should focus on blocking the thrombogenic and inflammatory properties of angiotensin II in COVID-19 patients.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2084
Author(s):  
José David Flores-Félix ◽  
Ana C. Gonçalves ◽  
Gilberto Alves ◽  
Luís R. Silva

The first cases of COVID-19, which is caused by the SARS-CoV-2, were reported in December 2019. The vertiginous worldwide expansion of SARS-CoV-2 caused the collapse of health systems in several countries due to the high severity of the COVID-19. In addition to the vaccines, the search for active compounds capable of preventing and/or fighting the infection has been the main direction of research. Since the beginning of this pandemic, some evidence has highlighted the importance of a phenolic-rich diet as a strategy to reduce the progression of this disease, including the severity of the symptoms. Some of these compounds (e.g., curcumin, gallic acid or quercetin) already showed capacity to limit the infection of viruses by inhibiting entry into the cell through its binding to protein Spike, regulating the expression of angiotensin-converting enzyme 2, disrupting the replication in cells by inhibition of viral proteases, and/or suppressing and modulating the host’s immune response. Therefore, this review intends to discuss the most recent findings on the potential of phenolics to prevent SARS-CoV-2.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 16-24
Author(s):  
Mohammed Oday Ezzat ◽  
Basma M. Abd Razik ◽  
Kutayba F. Dawood

The prevalence of a novel coronavirus (2019-nCoV) in the last few months represents a serious threat as a world health emergency concern. Angiotensin-converting enzyme 2 (ACE2) is the host cellular receptor for the respiratory syndrome of coronavirus epidemic in 2019 (2019-nCoV). In this work, the active site of ACE2 is successfully located by Sitmap prediction tool and validated by different marketed drugs. To design and discover new medical countermeasure drugs, we evaluate a total of 184 molecules of 7-chloro-N-methylquinolin-4-amine derivatives for binding affinity inside the crystal structure of ACE2 located active site. A novel series of N-substituted 2,5-bis[(7-chloroquinolin-4-yl)amino]pentanoic acid derivatives is generated and evaluated for a prospect as a lead compound for (2019-nCoV) medication with a docking score range of (-10.60 to -8.99) kcal/mol for the highest twenty derivatives. Moreover, the ADME pharmaceutical properties were evaluated for further proposed experimental evaluation in vitro or in vivo


2021 ◽  
Vol 8 ◽  
Author(s):  
Srichandan Padhi ◽  
Samurailatpam Sanjukta ◽  
Rounak Chourasia ◽  
Rajendra K. Labala ◽  
Sudhir P. Singh ◽  
...  

Fermented soybean products are traditionally consumed and popular in many Asian countries and the northeastern part of India. To search for potential agents for the interruption of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike glycoprotein 1 (S1) and human angiotensin-converting enzyme 2 (ACE2) receptor interactions, the in silico antiviral prospective of peptides identified from the proteome of kinema was investigated. Soybean was fermented using Bacillus licheniformis KN1G, Bacillus amyloliquefaciens KN2G and two different strains of Bacillus subtilis (KN2B and KN2M). The peptides were screened in silico for possible antiviral activity using two different web servers (AVPpred and meta-iAVP), and binding interactions of selected 44 peptides were further explored against the receptor-binding domain (RBD) of the S1 protein (PDB ID: 6M0J) by molecular docking using ZDOCK. The results showed that a peptide ALPEEVIQHTFNLKSQ (P13) belonging to B. licheniformis KN1G fermented kinema was able to make contacts with the binding motif of RBD by blocking specific residues designated as critical (GLN493, ASN501) in the binding of human angiotensin-converting enzyme 2 (ACE2) cell receptor. The selected peptide was also observed to have a significant affinity towards human toll like receptor 4 (TLR4)/Myeloid Differentiation factor 2 (MD2) (PDB ID: 3FXI) complex known for its essential role in cytokine storm. The energy properties of the docked complexes were analyzed through the Generalized Born model and Solvent Accessibility method (MM/GBSA) using HawkDock server. The results showed peptidyl amino acids GLU5, GLN8, PHE11, and LEU13 contributed most to P13-RBD binding. Similarly, ARG90, PHE121, LEU61, PHE126, and ILE94 were appeared to be significant in P13-TLR4/MD2 complex. The findings of the study suggest that the peptides from fermented soy prepared using B. licheniformis KN1G have better potential to be used as antiviral agents. The specific peptide ALPEEVIQHTFNLKSQ could be synthesized and used in combination with experimental studies to validate its effect on SARS-CoV-2-hACE2 interaction and modulation of TLR4 activity. Subsequently, the protein hydrolysate comprising these peptides could be used as prophylaxis against viral diseases, including COVID-19.


2020 ◽  
Author(s):  
Christopher Whitman

Abstract Starting December 30th, 2019, a virus spread from Wuhan, in the Hubei Province of China. The virus had soon been recognized as part of the Coronavirus and temporarily named 2019 Novel Coronavirus. The dramatic increase of infections led to the death of over 400 people, by Feb 4th, 2020. By this day the virus had already crossed into 27 countries. March 11th, 2020 the World Health Organization declared the Novel Coronavirus a pandemic, pointing to over 118,000 cases of infections in over 110 countries. This public health threat drove the international community to real-time sharing of the genetic sequences isolated from the viruses. We used these freely accessible genetic data, while leveraging bioinformatic tools, with the intent to explore possible contributions to address this threat. Angiotensin-converting Enzyme 2 Inhibition has been proven to be a valuable strategy address the spread of SARS. After proving remarkable genetic similarities between SARS and the 2019 Novel Coronavirus, we computationally built the first known ex-novo model of the 2019 Novel Coronavirus Spike Glycoprotein entirely generated from its aminoacidic sequence, using I-TASEER. We then assessed the 2019 Novel Coronavirus interaction with the human Angiotensin-converting Enzyme 2. This research prompts at the potential use of Angiotensin- converting Enzyme 2 receptors blockers, as both clinical and prophylaxis measures to contain the spread of 2019 Novel Coronavirus.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hao Deng ◽  
Xue Yan ◽  
Lamei Yuan

AbstractCoronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keiji Kuba ◽  
Tomokazu Yamaguchi ◽  
Josef M. Penninger

Seventeen years after the epidemic of SARS coronavirus, a novel coronavirus SARS-CoV-2-emerged resulting in an unprecedented pandemic. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2 as well as the SARS coronavirus. Despite many similarities to SARS coronavirus, SARS-CoV-2 exhibits a higher affinity to ACE2 and shows higher infectivity and transmissibility, resulting in explosive increase of infected people and COVID-19 patients. Emergence of the variants harboring mutations in the receptor-binding domain of the Spike protein has drawn critical attention to the interaction between ACE2 and Spike and the efficacies of vaccines and neutralizing antibodies. ACE2 is a carboxypeptidase which degrades angiotensin II, B1-bradykinin, or apelin, and thereby is a critical regulator of cardiovascular physiology and pathology. In addition, the enzymatic activity of ACE2 is protective against acute respiratory distress syndrome (ARDS) caused by viral and non-viral pneumonias, aspiration, or sepsis. Upon infection, both SARS-CoV-2 and SARS coronaviruses downregulates ACE2 expression, likely associated with the pathogenesis of ARDS. Thus, ACE2 is not only the SARS-CoV-2 receptor but might also play an important role in multiple aspects of COVID-19 pathogenesis and possibly post-COVID-19 syndromes. Soluble forms of recombinant ACE2 are currently utilized as a pan-variant decoy to neutralize SARS-CoV-2 and a supplementation of ACE2 carboxypeptidase activity. Here, we review the role of ACE2 in the pathology of ARDS in COVID-19 and the potential application of recombinant ACE2 protein for treating COVID-19.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7584
Author(s):  
Iryna O. Kravets ◽  
Dmytro V. Dudenko ◽  
Alexander E. Pashenko ◽  
Tatiana A. Borisova ◽  
Ganna M. Tolstanova ◽  
...  

We elaborate new models for ACE and ACE2 receptors with an excellent prediction power compared to previous models. We propose promising workflows for working with huge compound collections, thereby enabling us to discover optimized protocols for virtual screening management. The efficacy of elaborated roadmaps is demonstrated through the cost-effective molecular docking of 1.4 billion compounds. Savings of up to 10-fold in CPU time are demonstrated. These developments allowed us to evaluate ACE2/ACE selectivity in silico, which is a crucial checkpoint for developing chemical probes for ACE2.


Sign in / Sign up

Export Citation Format

Share Document