scholarly journals Inverse Method to Determine Fatigue Properties of Materials by Combining Cyclic Indentation and Numerical Simulation

Author(s):  
Hafiz Muhammad Sajjad ◽  
Hamad ul Hassan ◽  
Matthias Kuntz ◽  
Benjamin Josef Schäfer ◽  
Petra Sonnweber-Ribic ◽  
...  

The application of instrumented indentation to assess material properties like Young’s modulus and micro-hardness has become a standard method. In recent developments, indentation experiments and simulations have been combined to inverse methods, from which further material parameters as yield strength, work hardening rate, and tensile strength can be determined. In this work, an inverse method is introduced by which material parameters for cyclic plasticity, i.e. kinematic hardening parameters, can be determined. To accomplish this, cyclic Vickers indentation experiments are combined with finite element simulations of the indentation with unknown material properties, which are then determined by inverse analysis. To validate the proposed method, these parameters are subsequently applied to predict the uniaxial stress-strain response of a material with success. The method has been validated successfully for a quenched and tempered martensitic steel and for technically pure copper, where an excellent agreement between measured and predicted cyclic stress-strain-curves has been achieved. Hence, the proposed inverse method based on cyclic nanoindentation, as a quasi-non-destructive method, could complement or even substitute the resource-intensive conventional fatigue testing in the future for some applications.

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3126 ◽  
Author(s):  
Hafiz Muhammad Sajjad ◽  
Hamad ul Hassan ◽  
Matthias Kuntz ◽  
Benjamin J. Schäfer ◽  
Petra Sonnweber-Ribic ◽  
...  

The application of instrumented indentation to assess material properties like Young’s modulus and microhardness has become a standard method. In recent developments, indentation experiments and simulations have been combined to inverse methods, from which further material parameters such as yield strength, work hardening rate, and tensile strength can be determined. In this work, an inverse method is introduced by which material parameters for cyclic plasticity, i.e., kinematic hardening parameters, can be determined. To accomplish this, cyclic Vickers indentation experiments are combined with finite element simulations of the indentation with unknown material properties, which are then determined by inverse analysis. To validate the proposed method, these parameters are subsequently applied to predict the uniaxial stress–strain response of a material with success. The method has been validated successfully for a quenched and tempered martensitic steel and for technically pure copper, where an excellent agreement between measured and predicted cyclic stress–strain curves has been achieved. Hence, the proposed inverse method based on cyclic nanoindentation, as a quasi-nondestructive method, could complement or even substitute the resource-intensive conventional fatigue testing in the future for some applications.


2016 ◽  
Vol 725 ◽  
pp. 351-356
Author(s):  
Fusahito Yoshida ◽  
Hiroshi Hamasaki ◽  
Takeshi Uemori

This paper proposes a cyclic plasticity model to describe the closure of a cyclic stress-strain hysteresis loop based on the Y-U model. In this model, the backstress moves in a cyclic memory surface following a newly proposed kinematic hardening law. For this model just the same Y-U parameters can be used, and no additional material parameters are needed. By using a supplementary rule, this model is also able to describe ratcheting.


2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2003 ◽  
Vol 779 ◽  
Author(s):  
Biqiang Xu ◽  
Yanyao Jiang

AbstractA constitutive model was developed to bridge the cyclic plasticity behavior of single crystals and the corresponding characteristic dislocation structures. Yield and flow were built on the individual slip systems. The Armstrong-Frederick kinematic hardening rule was invoked to capture the Bauschinger effect. A material memory parameter was introduced to consider the amplitude dependence of cyclic hardening. Latent hardening considering the interactions among the slip systems was used to describe the anisotropic cyclic behavior. The experimental results of copper single crystals were used to validate the model developed. It was found that the model was able to adequately describe the well-known three distinctive regions in the cyclic stress-strain curve of the FCC single crystal oriented for single slip and the associated dislocation substructures. The model was capable of capturing the enhanced hardening observed in copper single crystals in multi-slip orientations. For a given loading history, the model can predict not only the saturated stress-strain response but also the detailed evolution of the transient cyclic behavior. The characteristic dislocation structures can be featured with the slip evolution.


Author(s):  
Koji Iwata ◽  
Yasuhisa Karakida ◽  
Chuanrong Jin ◽  
Hitoshi Nakamura ◽  
Naoto Kasahara

Carbon steel STS410 (JIS Standard), which is widely used for high pressure piping components, exhibits cyclic hardening under repeated loading. Extreme seismic loading can cause repetitive large strains, eventually leading to the failure of components. For failure assessment of such components, inelastic analyses using cyclic plasticity constitutive models are needed. In this paper, a multilayer kinematic hardening model for cyclic plasticity, equipped with a set of standard stress-strain characteristics, is developed for STS410 under isothermal condition of various temperatures. This model can express not only the nonlinearity of stress-strain relations, but cyclic hardening of a material by introducing a generic stress-strain relation composed of a combination of monotonic and steady state cyclic stress-strain curves. Finite element large deformation elastic-plastic analyses with this model are conducted for a cyclic in-plane bending test of an elbow. The proposed constitutive model predicted well characteristic features of global deformation and local strain behaviors of the elbow.


1991 ◽  
Vol 113 (3) ◽  
pp. 434-441 ◽  
Author(s):  
S. M. Kulkarni ◽  
G. T. Hahn ◽  
C. A. Rubin ◽  
V. Bhargava

This paper presents an elasto-plastic analysis of the repeated, frictionless, three-dimensional rolling contact similar to the ones produced by the rail-wheel geometry. This paper treats an elliptical contact rolling across a semi-infinite half space. The contact shape and loading: semi-major axis (in the rolling direction), w1 = 8 mm, and semi-minor axis, w2 = 5.88 mm, reflect standard rail and wheel curvatures and a wheel load of 149 KN (33,000 lb). A three-dimensional, elasto-plastic finite element model, developed earlier, is employed together with the elastic-linear-kinematic-hardening-plastic (ELKP) idealization of the cyclic plastic behaviour of a material similar to rail and wheel steels. The calculations present the displacements, the stress-strain distributions, stress-plastic strain histories and the plastic strain ranges in the half-space. The cyclic plasticity approaches a steady state after one contact with further contacts producing open but fully reversed stress-strain hysteresis loops, i.e., plastic shakedown.


Author(s):  
Kevan W. F. Gahan ◽  
John P. Parmigiani

Abstract Improved material models for engineered polymer and composite materials including both monotonic and fatigue characteristics are necessary for creating more accurate digital simulations for heavy duty trucks. Unlike steel and other alloys that are commonly included in truck designs, these advanced polymer materials do not have pre-existing fatigue characteristic data. Additionally, there are no individual standard test procedures that can be commonly cited and followed during a research program. These materials are found in hoods, dashboards, body panels and splash shields of trucks, and are subject to cyclic loading conditions at various amplitudes and durations throughout the entire use or “duty cycle” of the vehicle. The applied loads vary between truck models, as some trucks will be used for vocational purposes and others will remain on the highway. This paper describes the testing of isotropic non-reinforced, and anisotropic glass-fiber-reinforced polymers and the subsequent calculation of the monotonic and fatigue properties that are needed to describe their behavior under various loading conditions. Material characteristics are measured using a series of constant amplitude strain-controlled fatigue tests that follow standard practices from ASTM D638 (Standard Test Method for Tensile Properties of Plastics), ASTM E606 (Standard Practice for Strain-Controlled Fatigue Testing) methods, and SAE J1099 (Technical Report on Low Cycle Fatigue Properties of Ferrous and Non-Ferrous Materials). The ASTM D638 Type 1 coupon geometry is used for all materials, with a varied sample thickness and length. An axial extensometer is incorporated to measure strain data through the duration of all tests, and an anti-buckling fixture is installed during cyclic tests to eliminate any bending in the specimen during the compressive portion of the fully-reversed waveform. A transverse extensometer is also installed on the gauge length of the material coupons to measure instantaneous cross-sectional area as well as Poisson’s ratio during monotonic testing. The data collected through the monotonic testing procedure is used to calculate Young’s Modulus, Poisson’s ratio, ultimate tensile strength, elongation (% strain), yield strength and strain, and true fracture strength and strain. The fatigue testing procedure yields data that can be used to calculate the fatigue strength coefficient (σf′), fatigue strength exponent (b), fatigue ductility coefficient (εf′), and fatigue ductility exponent (c). These parameters provide accurate stress-strain, cyclic stress-strain, and strain-life curves for the materials in question. A method will also be suggested for calculating the stress-life fatigue parameters, stress range intercept and slope, from the strain-controlled data. Furthermore, mold-flow analysis is applied to predict general orientation of the reinforcement fibers induced by the direction of material flow as a part is injection-molded. The calculated monotonic and fatigue parameters in conjunction with mold-flow analysis can immediately be applied within digital s imulations, allowing improved accuracy in life-expectancy estimations for truck parts.


Author(s):  
P. W. Whaley

A theoretical model for material fatigue is described using irreversible thermodynamics to quantify fatigue damage by the generation of microplastic entropy. The microplastic entropy generated quantifies the microplastic deformation, commonly accepted as the mechanism of fatigue damage in polycrystalline materials. A stochastic model for microplastic deformation is utilized to calculate the expected values of tensile stress–strain, cyclic stress–strain, microplastic strain energy density and the microplastic entropy generated. When the cumulative microplastic entropy generated in cyclic loading exceeds the critical microplastic entropy threshold calculated from tensile tests, failure occurs. Calculated fatigue life with 99% tolerance limits (99% confidence) compares favorably to data for 6061-T6 aluminum rod and sheet specimens. Model parameters are determined from tensile tests and simple cyclic tests, decreasing the high cost of fatigue testing for parameter identification. This new theory has the potential to significantly decrease the cost of characterizing the fatigue properties of new materials.


2010 ◽  
Vol 146-147 ◽  
pp. 1617-1620
Author(s):  
Zhi Lan Zhan ◽  
Gao Ping Liu ◽  
Xuechao Chen

Cyclic plasticity and viscoplasticity of a nickel-chromium alloy have been described using the Chaboche unified constitutive model. Experiments have been developed to obtain the full cyclic stress-strain and stress relaxation data at 450°C. A step-by-step method has been used to obtain the initial material parameters, while a non-linear least-square approach has been used to obtain the optimised material parameters. Satisfactory results have been obtained for the simulation of the transient and steady state cyclic stress-strain and stress relaxation behavior.


2000 ◽  
Vol 123 (4) ◽  
pp. 391-397 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

The main objective of this paper is to obtain the first few stress-strain loops of sheet metals from reverse loading so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain, and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro-genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


Sign in / Sign up

Export Citation Format

Share Document