scholarly journals When 5G Meets Deep Learning: A Systematic Review

Author(s):  
Guto Leoni Santos ◽  
Patricia Takako Endo ◽  
Djamel Sadok ◽  
Judith Kelner

This last decade, the amount of data exchanged in the Internet increased by over a staggering factor of 100, and is expected to exceed well over the 500 exabytes by 2020. This phenomenon is mainly due to the evolution of high speed broadband Internet and, more specifically, the popularization and wide spread use of smartphones and associated accessible data plans. Although 4G with its long-term evolution (LTE) technology is seen as a mature technology, there is continual improvement to its radio technology and architecture such as in the scope of the LTE Advanced standard, a major enhancement of LTE. But for the long run, the next generation of telecommunication (5G) is considered and is gaining considerable momentum from both industry and researchers. In addition, with the deployment of the Internet of Things (IoT) applications, smart cities, vehicular networks, e-health systems, and Industry 4.0, a new plethora of 5G services has emerged with very diverging and technologically challenging design requirements. These include: high mobile data volume per area, high number of devices connected per area, high data rates, longer battery life for low-power devices, and reduced end-to-end latency. Several technologies are being developed to meet these new requirements. Among these we list ultra-densification, millimeter Wave usage, antennas with massive multiple-input multiple-output (MIMO), antenna beamforming to increase spacial diversity, edge/fog computing, among others. Each of these technologies brings its own design issues and challenges. For instance, ultra-densification and MIMO will increase the complexity to estimate channel condition and traditional channel state information (CSI) estimation techniques are no longer suitable due to the complexity of the new scenarios. As a result, new approaches to evaluate network condition such as by continuously collecting and monitoring key performance indicators become necessary. Timely decisions are needed to ensure the correct operation of such network. In this context, deep learning (DL) models could be seen as one of the main tools that can be used to process monitoring data and automate decisions. As these models are able to extract relevant features from raw data (images, texts, and other types of unstructured data), the integration between 5G and DL looks promising and one that requires exploring. As main contributions, this paper presents a systematic review about how DL is being applied to solve some 5G issues. We examine data from the last decade and the works that addressed diverse 5G problems, such as physical medium state estimation, network traffic prediction, user device location prediction, self network management, among others. We also discuss the main research challenges when using DL models in 5G scenarios and identify several issues that deserve further consideration.

Algorithms ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 208
Author(s):  
Guto Leoni Santos ◽  
Patricia Takako Endo ◽  
Djamel Sadok ◽  
Judith Kelner

This last decade, the amount of data exchanged on the Internet increased by over a staggering factor of 100, and is expected to exceed well over the 500 exabytes by 2020. This phenomenon is mainly due to the evolution of high-speed broadband Internet and, more specifically, the popularization and wide spread use of smartphones and associated accessible data plans. Although 4G with its long-term evolution (LTE) technology is seen as a mature technology, there is continual improvement to its radio technology and architecture such as in the scope of the LTE Advanced standard, a major enhancement of LTE. However, for the long run, the next generation of telecommunication (5G) is considered and is gaining considerable momentum from both industry and researchers. In addition, with the deployment of the Internet of Things (IoT) applications, smart cities, vehicular networks, e-health systems, and Industry 4.0, a new plethora of 5G services has emerged with very diverging and technologically challenging design requirements. These include high mobile data volume per area, high number of devices connected per area, high data rates, longer battery life for low-power devices, and reduced end-to-end latency. Several technologies are being developed to meet these new requirements, and each of these technologies brings its own design issues and challenges. In this context, deep learning models could be seen as one of the main tools that can be used to process monitoring data and automate decisions. As these models are able to extract relevant features from raw data (images, texts, and other types of unstructured data), the integration between 5G and DL looks promising and one that requires exploring. As main contribution, this paper presents a systematic review about how DL is being applied to solve some 5G issues. Differently from the current literature, we examine data from the last decade and the works that address diverse 5G specific problems, such as physical medium state estimation, network traffic prediction, user device location prediction, self network management, among others. We also discuss the main research challenges when using deep learning models in 5G scenarios and identify several issues that deserve further consideration.


Author(s):  
Karan Bajaj ◽  
Bhisham Sharma ◽  
Raman Singh

AbstractThe Internet of Things (IoT) applications and services are increasingly becoming a part of daily life; from smart homes to smart cities, industry, agriculture, it is penetrating practically in every domain. Data collected over the IoT applications, mostly through the sensors connected over the devices, and with the increasing demand, it is not possible to process all the data on the devices itself. The data collected by the device sensors are in vast amount and require high-speed computation and processing, which demand advanced resources. Various applications and services that are crucial require meeting multiple performance parameters like time-sensitivity and energy efficiency, computation offloading framework comes into play to meet these performance parameters and extreme computation requirements. Computation or data offloading tasks to nearby devices or the fog or cloud structure can aid in achieving the resource requirements of IoT applications. In this paper, the role of context or situation to perform the offloading is studied and drawn to a conclusion, that to meet the performance requirements of IoT enabled services, context-based offloading can play a crucial role. Some of the existing frameworks EMCO, MobiCOP-IoT, Autonomic Management Framework, CSOS, Fog Computing Framework, based on their novelty and optimum performance are taken for implementation analysis and compared with the MAUI, AnyRun Computing (ARC), AutoScaler, Edge computing and Context-Sensitive Model for Offloading System (CoSMOS) frameworks. Based on the study of drawn results and limitations of the existing frameworks, future directions under offloading scenarios are discussed.


2020 ◽  
Author(s):  
Tanweer Alam ◽  
Mohamed Benaida

Building the innovative blockchain-based architecture across the Internet of Things (IoT) platform for the education system could be an enticing mechanism to boost communication efficiency within the 5 G network. Wireless networking would have been the main research area allowing people to communicate without using the wires. It was established at the start of the Internet by retrieving the web pages to connect from one computer to another computer Moreover, high-speed, intelligent, powerful networks with numerous contemporary technologies, such as low power consumption, and so on, appear to be available in today's world to connect among each other. The extension of fog features on physical things under IoT is allowed in this situation. One of the complex tasks throughout the area of mobile communications would be to design a new virtualization framework based on blockchain across the Internet of Things architecture. The goal of this research is to connect a new study for an educational system that contains Blockchain to the internet of things or keeping things cryptographically secure on the internet. This research combines with its improved blockchain and IoT to create an efficient interaction system between students, teachers, employers, developers, facilitators and accreditors on the Internet. This specified framework is detailed research's great estimation.


2020 ◽  
Vol 1 (1) ◽  
pp. 7-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 73
Author(s):  
Kuldoshbay Avazov ◽  
Mukhriddin Mukhiddinov ◽  
Fazliddin Makhmudov ◽  
Young Im Cho

In the construction of new smart cities, traditional fire-detection systems can be replaced with vision-based systems to establish fire safety in society using emerging technologies, such as digital cameras, computer vision, artificial intelligence, and deep learning. In this study, we developed a fire detector that accurately detects even small sparks and sounds an alarm within 8 s of a fire outbreak. A novel convolutional neural network was developed to detect fire regions using an enhanced You Only Look Once (YOLO) v4network. Based on the improved YOLOv4 algorithm, we adapted the network to operate on the Banana Pi M3 board using only three layers. Initially, we examined the originalYOLOv4 approach to determine the accuracy of predictions of candidate fire regions. However, the anticipated results were not observed after several experiments involving this approach to detect fire accidents. We improved the traditional YOLOv4 network by increasing the size of the training dataset based on data augmentation techniques for the real-time monitoring of fire disasters. By modifying the network structure through automatic color augmentation, reducing parameters, etc., the proposed method successfully detected and notified the incidence of disastrous fires with a high speed and accuracy in different weather environments—sunny or cloudy, day or night. Experimental results revealed that the proposed method can be used successfully for the protection of smart cities and in monitoring fires in urban areas. Finally, we compared the performance of our method with that of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.


2020 ◽  
Vol 1 (2) ◽  
pp. 6-13
Author(s):  
Bayu Prastyo ◽  
Faiz Syaikhoni Aziz ◽  
Wahyu Pribadi ◽  
A.N. Afandi

Internet use in Banyumas Regency is now increasingly diverse according to the demands of the needs. The development of communication technology raises various aspects that also develop. For example, the use of the internet for a traffic light control system so that it can be adjusted according to the settings and can be monitored in real time. In the development of communication technology, the term Internet of Things (IoT) emerged as the concept of extending the benefits of internet communication systems to give impulses to other systems. In other words, IoT is used as a communication for remote control and monitoring by utilizing an internet connection. The Internet of Things in the era is now being developed to create an intelligent system for the purposes of controlling various public needs until the concept of the smart city emerges. Basically, smart cities utilize internet connections for many purposes such as controlling CCTV, traffic lights, controlling arm robots in the industry and storing data in hospitals. If the system is carried out directly from the device to the central server, there will be a very long queue of data while the system created requires speed and accuracy of time so that a system is needed that allows sufficient data control and processing to be carried out on network edge users. Then fog Computing is used with the hope that the smart city system can work with small latency values ​​so that the system is more real-time in sending or receiving data


2021 ◽  
Vol 5 (2) ◽  
pp. 105
Author(s):  
Wasswa Shafik ◽  
S. Mojtaba Matinkhah ◽  
Mamman Nur Sanda ◽  
Fawad Shokoor

In recent years, the IoT) Internet of Things (IoT) allows devices to connect to the Internet that has become a promising research area mainly due to the constant emerging of the dynamic improvement of technologies and their associated challenges. In an approach to solve these challenges, fog computing came to play since it closely manages IoT connectivity. Fog-Enabled Smart Cities (IoT-ESC) portrays equitable energy consumption of a 7% reduction from 18.2% renewable energy contribution, which extends resource computation as a great advantage. The initialization of IoT-Enabled Smart Grids including (FESC) like fog nodes in fog computing, reduced workload in Terminal Nodes services (TNs) that are the sensors and actuators of the Internet of Things (IoT) set up. This paper proposes an integrated energy-efficiency model computation about the response time and delays service minimization delay in FESC. The FESC gives an impression of an auspicious computing model for location, time, and delay-sensitive applications supporting vertically -isolated, service delay, sensitive solicitations by providing abundant, ascendable, and scattered figuring stowage and system associativity. We first reviewed the persisting challenges in the proposed state-of-the models and based on them. We introduce a new model to address mainly energy efficiency about response time and the service delays in IoT-ESC. The iFogsim simulated results demonstrated that the proposed model minimized service delay and reduced energy consumption during computation. We employed IoT-ESC to decide autonomously or semi-autonomously whether the computation is to be made on Fog nodes or its transfer to the cloud.


2020 ◽  
Author(s):  
Rateb Jabbar ◽  
Moez Krichen ◽  
Mohamed Kharbeche ◽  
Noora Fetais ◽  
Kamel Barkaoui

<div>The emergence of embedded and connected smart technologies, systems, and devices has enabled the concept of smart cities by connecting every ``thing'' to the Internet and in particular in transportation through the Internet of Vehicles (IoV). The main purpose of IoV is to prevent fatal crashes by resolving traffic and road safety problems. Nevertheless, it is paramount to ensure secure and accurate transmission and recording of data in ``Vehicle-to-Vehicle'' (V2V) and ``Vehicle-to-Infrastructure'' (V2I) communication. </div><div>To improve ``Vehicle-to-Everything'' (V2X) communication, this work uses Blockchain technology for developing a Blockchain-based IoT system aimed at establishing secure communication and developing a fully decentralized cloud computing platform.</div><div> Moreover, the authors propose a model-based framework to validate the proposed approach. This framework is mainly based on the use of the Attack Trees (AT) and timed automaton (TA) formalisms in order to test the functional, load and security aspects. An optimization phase for testers placement inspired by fog computing is proposed as well.</div>


2020 ◽  
Author(s):  
Tanweer Alam ◽  
Mohamed Benaida

Building the innovative blockchain-based architecture across the Internet of Things (IoT) platform for the education system could be an enticing mechanism to boost communication efficiency among all participants within the 5G network. Wireless networking would have been the main research area allowing people to communicate without using the wires. It was established at the start of the Internet by retrieving the web pages to connect from one computer to another. Moreover, high-speed, intelligent, powerful networks with numerous contemporary technologies, such as low power consumption, and so on, appear to be available in today's world to connect among each other. The cloud features on physical things under IoT is allowed to store and process IoT and Blockchain data in any situation. One of the complex tasks throughout the area of mobile communications would be to design a new virtualization framework based on blockchain across the Internet of Things architecture. The goal of this research is to connect a new study for an educational system that contains Blockchain to the internet of things or keeping things cryptographically secure on the Internet. This research combines with its improved blockchain and IoT to create an efficient interaction system among students, teachers, employers, developers, facilitators, recruiters, and accreditors on the Internet. This specified framework is detailed research's great estimation.


2021 ◽  
Vol 2 (4) ◽  
pp. 273-284
Author(s):  
Antonio Salis

Recent advances in Internet of Things (IoT) and the rising of the Internet of Behavior (IoB) have made it possible to develop real-time improved traveler assistance tools for mobile phones, assisted by cloud-based machine learning, and using fog computing in between IoT and the Cloud. Within the Horizon2020-funded mF2C project an Android app has been developed exploiting the proximity marketing concept and covers the essential path through the airport onto the flight, from the least busy security queue through to the time to walk to gate, gate changes, and other obstacles that airports tend to entertain travelers with. It gives chance to travelers to discover the facilities of the airport, aided by a recommender system using machine learning, that can make recommendations and offer voucher according with the traveler’s preferences or on similarities to other travelers. The system provides obvious benefits to the airport planners,  not only people tracking in the shops area, but also aggregated and anonymized view, like heat maps that can highlight bottlenecks in the infrastructure, or suggest situations that require intervention, such as emergencies. With the emerging of the COVID pandemic the tool could be adapted to help in the social distancing to guarantee safety. The use of the fog-to-cloud platform and the fulfilling of all centricity and privacy requirements of the IoB give evidence of the impact of the solution. Doi: 10.28991/HIJ-2021-02-04-01 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document