scholarly journals Phytochemical Constituents Propolis Flavonoid, Immunological Enhancement, Anti-porcine Parvovirus Activities of isolated from the Propolis

Author(s):  
Xia Ma ◽  
zhenhuan guo ◽  
zhiqiang zhang ◽  
xianghui li ◽  
yizhou lv ◽  
...  

Propolis was widely used in health preservation and disease healing, it contains many ingredients. The previous study had been revealed that the propolis has a wide range of efficacy, such as antiviral, immune enhancement, anti-inflammatory and so on, but its antiviral components and underlying mechanism of action remain unknown. In this study, we investigated the chemical composition, and anti-PPV and immunological enhancement of Propolis Flavonoid(PF). Chemical composition of PF was distinguished by UPLC-Q/TOF-MS/MS analysis.The presence and characterized of 26 major components was distinguished in negative ionization modes.To evaluate the effects of PF used as adjuvant on the immune response porcine parvovirus (PPV). Thirty Landrace-Yorkshire hybrid sows were randomly assigned to 3 groups, and the sows in adjuvant groups were intramuscular injected PPV vaccine with 2.0 mL PF adjuvant (PA), oilemulsion adjuvant (OA), respectively. After that, serum hemagglutination inhibition antibody titers, IgM and IgG subclasses, eripheral lymphocyte proliferation activity, and concentrations of cytokines were measured. Results indicated an enhancing effect of PA on IgM, IL-2, IL-4, IFN-γ and the IgG subclass responses. These findings suggested that PA could significantly enhance the immune responses. Furthermore, we screened the chemical components the effective of anti-PPV, Ferulic acid have an excellently anti-PPV effective.

2012 ◽  
Vol 12 (6) ◽  
pp. 3065-3114 ◽  
Author(s):  
R. M. Harrison ◽  
M. Dall'Osto ◽  
D. C. S. Beddows ◽  
A. J. Thorpe ◽  
W. J. Bloss ◽  
...  

Abstract. The REgents PARk and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Qi Ye ◽  
Su-Juan Wang ◽  
Jian-Yu Chen ◽  
Khalid Rahman ◽  
Hai-Liang Xin ◽  
...  

Hypertrophic scar is a complication of wound healing and has a high recurrence rate which can lead to significant abnormity in aesthetics and functions. To date, no ideal treatment method has been established. Meanwhile, the underlying mechanism of hypertrophic scarring has not been clearly defined. Although a large amount of scientific research has been reported on the use of medicinal plants as a natural source of treatment for hypertrophic scarring, it is currently scattered across a wide range of publications. Therefore, a systematic summary and knowledge for future prospects are necessary to facilitate further medicinal plant research for their potential use as antihypertrophic scar agents. A bibliographic investigation was accomplished by focusing on medicinal plants which have been scientifically testedin vitroand/orin vivoand proved as potential agents for the treatment of hypertrophic scars. Although the chemical components and mechanisms of action of medicinal plants with antihypertrophic scarring potential have been investigated, many others remain unknown. More investigations and clinical trials are necessary to make use of these medical plants reasonably and phytotherapy is a promising therapeutic approach against hypertrophic scars.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Aisha Idris Ali ◽  
Virginia Paul ◽  
Amit Chattree ◽  
Ranu Prasad ◽  
Ajit Paul ◽  
...  

Murraya koenigii (Rutaceae) is a promising source of bioactive compounds since the leaves of this plant has been traditionally used extensively in the Indian Ayurvedic system of medicine for the treatment of a wide range of diseases and disorders. Although the pharmacological effect of the plant’s bioactive compounds has been extensively studied, however, study on the effect of using different extraction solvents to extract these bioactive componentsis scarce. The aim of the present study was to evaluate the impact of different solvents on extraction yields, phytochemical constituents and antioxidants activity of dehydrated Murrayakoenigi leaves. The results showed that the used solvents play an important role in the yield of extraction and the content of chemical components. Methanol was identified as the most effective solvent for the extraction, resulting in the highest extraction yield (5.70%) as well as the highest content of phenolic (27.2 mg GAE/g DW) and flavonoid (15.55 mg QE/g DW). The extract obtained from methanol exhibited highest antioxidant scavenging activity (93%), (using 2,2-diphenyl-1- picrylhydrazyl (DPPH) free radical scavenging assay), and the antioxidant activity of Murraya koenigi leaves extract was found to be higher than ascorbic acid. Therefore, methanol is recommended as the optimal solvent to obtain high content of phytochemical constituents as well as high antioxidants constituents from Murraya koenigi leaves for utilization in pharmacognosy. To best of our knowledge this is the first report that directly compares these 4 extraction solvents for the extraction of bioactive components from Murraya koenigi leaves.


2011 ◽  
Vol 11 (11) ◽  
pp. 30145-30271 ◽  
Author(s):  
R. M. Harrison ◽  
M. Dall'Osto ◽  
D. C. S. Beddows ◽  
A. J. Thorpe ◽  
W. J. Bloss ◽  
...  

Abstract. The Regents Park and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.


2016 ◽  
Vol 56 (2) ◽  
pp. 177-188 ◽  
Author(s):  
L. P. Golobokova ◽  
V. V. Polkin ◽  
N. A. Onischuk ◽  
O. I. Khuriganova ◽  
A. B. Tikhomirov ◽  
...  

Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE), namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV) «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3) and Mirny (0,50 ág / m3). The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1). It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of contributions of the continental and maritime factors to formation of the aerosol chemical composition revealed higher enrichment ratios for K+, Ca2+, SO4 2− (K = 3.6÷13.0). This reflects not only influence of the natural sources, but the intensity of human activities on the Antarctic continent as well. The elemental composition of solid aerosols was also analyzed. The largest concentrations were determined for Zn, Al and Fe. The ratio of concentration of the elements in both the soluble and insoluble phases of the aerosol showed that 84.1% of the total amount of the elements was contained in a water-insoluble state. Fractional relation between the element concentrations changed in different phases from 16 to 98%. High enrichment of the aerosol particles by Zn, Cu, Cr, Ba, Pb, Ni,Se, As, Cd (the enrichment factors = 27÷26 445) had been revealed. The content of dominant chemical components (Na+, Cl−, Zn, Fe), factors and coefficients of the element enrichment in the aerosols as well as in fresh snow of the coastal zone of East Antarctica are indicative of the identity of sources where their composition is formed.


2018 ◽  
Vol 46 (2) ◽  
pp. 258-267
Author(s):  
J.M. Alonso Vega ◽  
Pedro H. Toledo

Lessonia berteroana (ex L. nigrescens) is kelp freely harvested from Open Access Areas (OAA), and to some extent controlled, from Management and Exploitation Areas for Benthic Resources (MEABR). Harvesting pressures can change population dynamics, mainly in OAAs. In particular, harvesting may alter the chemical components of plants. Therefore, the aim of this study was to determine the harvesting effects on the chemical composition of L. berteroana from MEABR and OAA sampled during different seasons (spring and fall) and at two sites (Talquilla and Lagunillas) near Coquimbo (30°S), Chile. The crude protein (13.5 ± 1.0%), total lipids (0.9 ± 0.2%), crude fiber (16.3 ± 1.6%), ash (30.1 ± 1.5%), and nitrogen-free extract (39.2 ± 2.0%) contents of L. berteroana were within reference values for Laminariales species. Population descriptors and chemical analyses showed that harvesting had local effects, rather than being affected by a resource management strategy (OAA vs MEABR). The seasonal anticipator nature of L. berteroana may explain the detected seasonality of it's chemical composition. Regarding functional morphological structures, chemical composition in the fronds was more variable than in the stipes and perennial holdfast, probably since leaves are ephemeral structures susceptible to environmental changes and that play a functional, rather than structural, role in kelp. In the context of Chilean kelp resource management, monitoring chemical composition is useful for determining optimal harvesting periods to local scale and for deciding when commercially valuable compounds, such as alginate, should be extracted. These data also complement harvesting pressure indicators based on L. berteroana demographic parameters.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingzhong Chen ◽  
Xiaolong Huang ◽  
Bingli Tong ◽  
Deng Wang ◽  
Jiming Liu ◽  
...  

Abstract Background This study examined how rhizosphere fungi influence the accumulation of chemical components in fruits of a small population species of Cinnamomum migao. Results Ascomycota and Basidiomycota were dominant in the rhizosphere fungal community of C. migao. Pestalotiopsis and Gibellulopsis were associated with α-Terpineol and sabinene content, and Gibellulopsis was associated with crude fat and carbohydrate content. There were significant differences in rhizosphere fungal populations between watersheds, and there was no obvious change between fruiting periods. Gibberella, Ilyonectria, Micropsalliota, and Geminibasidium promoted sabinene accumulation, and Clitocybula promoted α-Terpineol accumulation. Conclusion The climate-related differentiation of rhizosphere fungal communities in watershed areas is the main driver of the chemical composition of C. migao fruit. The control of the production of biologically active compounds by the rhizosphere fungal community provides new opportunities to increase the industrial and medicinal value of the fruit of C. migao.


2014 ◽  
Vol 42 (05) ◽  
pp. 1071-1098 ◽  
Author(s):  
Mao-Xing Li ◽  
Xi-Rui He ◽  
Rui Tao ◽  
Xinyuan Cao

In the present review, the literature data on the chemical constituents and biological investigations of the genus Pedicularis are summarized. Some species of Pedicularis have been widely applied in traditional Chinese medicine. A wide range of chemical components including iridoid glycosides, phenylpropanoid glycosides (PhGs), lignans glycosides, flavonoids, alkaloids and other compounds have been isolated and identified from the genus Pedicularis. In vitro and in vivo studies indicated some monomer compounds and extracts from the genus Pedicularis have been found to possess antitumor, hepatoprotective, anti-oxidative, antihaemolysis, antibacterial activity, fatigue relief of skeletal muscle, nootropic effect and other activities.


Sign in / Sign up

Export Citation Format

Share Document