scholarly journals Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

2016 ◽  
Vol 56 (2) ◽  
pp. 177-188 ◽  
Author(s):  
L. P. Golobokova ◽  
V. V. Polkin ◽  
N. A. Onischuk ◽  
O. I. Khuriganova ◽  
A. B. Tikhomirov ◽  
...  

Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE), namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV) «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3) and Mirny (0,50 ág / m3). The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1). It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of contributions of the continental and maritime factors to formation of the aerosol chemical composition revealed higher enrichment ratios for K+, Ca2+, SO4 2− (K = 3.6÷13.0). This reflects not only influence of the natural sources, but the intensity of human activities on the Antarctic continent as well. The elemental composition of solid aerosols was also analyzed. The largest concentrations were determined for Zn, Al and Fe. The ratio of concentration of the elements in both the soluble and insoluble phases of the aerosol showed that 84.1% of the total amount of the elements was contained in a water-insoluble state. Fractional relation between the element concentrations changed in different phases from 16 to 98%. High enrichment of the aerosol particles by Zn, Cu, Cr, Ba, Pb, Ni,Se, As, Cd (the enrichment factors = 27÷26 445) had been revealed. The content of dominant chemical components (Na+, Cl−, Zn, Fe), factors and coefficients of the element enrichment in the aerosols as well as in fresh snow of the coastal zone of East Antarctica are indicative of the identity of sources where their composition is formed.

1970 ◽  
Vol 39 (1) ◽  
pp. 61-69 ◽  
Author(s):  
Ashafaque Ahmed ◽  
Mikael Ohlson ◽  
Sirajul Hoque ◽  
Md Golam Moula

Chemical composition of leaves of Sonneratia apetala Buch.-Ham. collected from three islands (chars) representing three hydrological regimes in a segment of the coastal zone of Bangladesh was studied. Their relations to some soil chemical and physical variables have also been investigated. The results showed that concentrations of B, C, Fe, Ga, Li, Mg, Mn, N, Na, P, Zn and Sr in leaves of S. apetala grown in different islands differed significantly. It was also revealed that some heavy metals, viz. Mn, Fe, Al, Sr and Ti showed wide range of concentrations. The leaves from one of the locations in Motherbunia island were characterized by exceptional high concentrations of heavy metals such as Al, As, Cu, Fe, Li, Ni, Pb that may be due to local contamination. Leaves sampled in the most seaward locations of the same island had highest concentrations of Ba, Ca, Cu, Mn and Na. High Mn concentration was found in the leaves of S. apetala of Motherbunia island. Correlations among soil and plant samples were generally very weak and organic matter content of soil did not appear to play a significant role in the nutrient supply of S. apetala. Key words: Coastal zone; tidal inundation; elemental concentration; Sonneratia apetala DOI: 10.3329/bjb.v39i1.5528Bangladesh J. Bot. 39(1): 61-69, 2010 (June)


2012 ◽  
Vol 12 (6) ◽  
pp. 3065-3114 ◽  
Author(s):  
R. M. Harrison ◽  
M. Dall'Osto ◽  
D. C. S. Beddows ◽  
A. J. Thorpe ◽  
W. J. Bloss ◽  
...  

Abstract. The REgents PARk and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.


Author(s):  
Xia Ma ◽  
zhenhuan guo ◽  
zhiqiang zhang ◽  
xianghui li ◽  
yizhou lv ◽  
...  

Propolis was widely used in health preservation and disease healing, it contains many ingredients. The previous study had been revealed that the propolis has a wide range of efficacy, such as antiviral, immune enhancement, anti-inflammatory and so on, but its antiviral components and underlying mechanism of action remain unknown. In this study, we investigated the chemical composition, and anti-PPV and immunological enhancement of Propolis Flavonoid(PF). Chemical composition of PF was distinguished by UPLC-Q/TOF-MS/MS analysis.The presence and characterized of 26 major components was distinguished in negative ionization modes.To evaluate the effects of PF used as adjuvant on the immune response porcine parvovirus (PPV). Thirty Landrace-Yorkshire hybrid sows were randomly assigned to 3 groups, and the sows in adjuvant groups were intramuscular injected PPV vaccine with 2.0 mL PF adjuvant (PA), oilemulsion adjuvant (OA), respectively. After that, serum hemagglutination inhibition antibody titers, IgM and IgG subclasses, eripheral lymphocyte proliferation activity, and concentrations of cytokines were measured. Results indicated an enhancing effect of PA on IgM, IL-2, IL-4, IFN-γ and the IgG subclass responses. These findings suggested that PA could significantly enhance the immune responses. Furthermore, we screened the chemical components the effective of anti-PPV, Ferulic acid have an excellently anti-PPV effective.


2006 ◽  
Vol 6 (3) ◽  
pp. 5585-5628 ◽  
Author(s):  
K. Tsigaridis ◽  
M. Krol ◽  
F. J. Dentener ◽  
Y. Balkanski ◽  
J. Lathière ◽  
...  

Abstract. To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34–42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased by 11%. The increase in oxidant levels and preexisting aerosol mass since preindustrial times is the reason of the burden change, since emissions have not changed significantly. The computed aerosol composition changes translate into about 2.5 times more water associated with non sea-salt aerosol. Additionally, aerosols contain 2.7 times more inorganic components nowadays than during the preindustrial times. We find that the increase in emissions of inorganic aerosol precursors is much larger than the corresponding aerosol increase, reflecting a non-linear atmospheric response.


Ecocycles ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 23-34
Author(s):  
Martyna Malinowska ◽  
Anita U. Lewandowska ◽  
Michalina Bielawska

In order to improve soil quality, size, and appearance of plants, various types of fertilizers are used in Poland. They are rich in nitrogen, phosphorus, calcium, and potassium. Plants are fertilized before sowing, during germination, and during crop growth. Such agricultural activity can have a negative effect on the chemical composition of atmospheric aerosols, which can be transported with air masses far away from the agricultural sources regions. The aim of the research was to estimate the influence of agriculture on the chemical composition of aerosols of various sizes (<0.45 to 10 µm) in the atmosphere of the coastal zone of the Baltic Sea. The samples were collected in Gdynia, from 11/05/2016 to 17/08/2016, only outside traffic hours (10:00 a.m. - 3:00 p.m.) and only when air masses were transported from over agricultural areas. Aerosols were collected using Tisch Environmental high-flow impactor. The ions (NO3?, PO43-, K+, Ca2+) were determined by Metrohm ion chromatography (881 Compact IC pro). The obtained results allowed us to conclude that the highest mean concentrations of NO3?, K+, Ca2+occurred in aerosols below 0.45 µm in diameter (0.26, 0.04 and 5.85 µg·m-3, respectively). Phosphates showed the highest average concentration (0.191 µg·m-3) in aerosols with a diameter from 1.5 to 3.0 µm. The concentration of calcium and nitrates was the highest in the days when advection from Western Kashubia was dominant. In turn, the highest concentrations of phosphates and potassium occurred on the days when air masses were transported from Vistula ?u?awy. All episodes occurred in the spring when agricultural activity related to fertilizing farmland was the highest and the average wind speed was lower than 5 m·s-1, which indicates local to the regional origin of the analyzed compounds in aerosols.


2011 ◽  
Vol 11 (11) ◽  
pp. 30145-30271 ◽  
Author(s):  
R. M. Harrison ◽  
M. Dall&amp;apos;Osto ◽  
D. C. S. Beddows ◽  
A. J. Thorpe ◽  
W. J. Bloss ◽  
...  

Abstract. The Regents Park and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.


2013 ◽  
Vol 7 (3) ◽  
pp. 2007-2028
Author(s):  
T. V. Khodzher ◽  
L. P. Golobokova ◽  
Y. A. Shibaev ◽  
V. Y. Lipenkov ◽  
J. R. Petit

Abstract. This paper presents data on chemical composition of the Antarctic snow sampled during the 53rd Russian Antarctic Expedition (RAE, 2008) along the first tractor traverse (TT) from Station Progress to Station Vostok (East Antarctica). Snow samples were obtained from the cores drilled at 55.3, 253, 337, 369, 403, 441, 480, 519, 560, 618, 819, and 1276 km from Station Progress. Data on horizontal and deep distribution of chemical components in the snow provide evidence of spatial and temporal variations of conditions for the snow cover formation along the transect under study. Sea salt was the main source for chemical composition of snow cover near the ice edge. Concentrations of marine-derived components decreased further inland. A hypothesis was put forward that some ions in the snow cover of the central part of East Antarctica were likely to be of continental origin. Elevated concentrations of sulphate ions of continental origin were recorded in some profiles of the transect at a depth of 130–150 cm which was attributed to buried signals of the Pinatubo volcano eruption (1991).


2004 ◽  
Vol 39 ◽  
pp. 53-61 ◽  
Author(s):  
Roberto Udisti ◽  
Silvia Becagli ◽  
Silvia Benassai ◽  
Emiliano Castellano ◽  
Ilaria Fattori ◽  
...  

AbstractThe study of aerosol composition and air–snow exchange processes is relevant to the reconstruction of past atmosphere composition from ice cores. For this purpose, aerosol samples, superficial snow layers and firn samples from snow pits were collected at Dome Concordia station, East Antarctica, during the 2000/01 summer field season. The aerosol was collected in a ‘coarse’ and a ‘fine’ fraction, roughly separated from each other by a stacked filter system (5.0 and 0.4 μm). Atomic Force Microscopy (AFM) direct measurements on the fine fraction showed that 72% of surface size distribution ranges from 1.0 x 105 to 1.2 x 106 nm2. Assuming a spherical model, the volume size distribution of particles smaller than 5.0 μm shows a mode in the radius range 0.2–0.6 μm. Ion chromatographic (IC) measurements of selected chemical components allowed calculation of the ionic balance of the two size fractions. The fine fraction is dominant, representing 86% of the total ionic budget, and it is characterized by high content of sulphate and acidity. Principal component analysis (PCA) identified sea-spray and biogenic aerosol sources and showed some particulars of the transport and depositional processes of some chemical components (Ca2+, MSA, nssSO42–). Comparative analysis of aerosol, surface hoar and superficial snow showed differences in chemical composition: nitrate and chloride exhibit very high concentrations in the uppermost snow layers and in the surface hoar, and low values in the aerosol. This evidence demonstrates that nitrate and chloride are mainly in gas phase at Dome C and they can be caught on the snow and hoar surface through dry deposition and adsorption processes.


2018 ◽  
Vol 46 (2) ◽  
pp. 258-267
Author(s):  
J.M. Alonso Vega ◽  
Pedro H. Toledo

Lessonia berteroana (ex L. nigrescens) is kelp freely harvested from Open Access Areas (OAA), and to some extent controlled, from Management and Exploitation Areas for Benthic Resources (MEABR). Harvesting pressures can change population dynamics, mainly in OAAs. In particular, harvesting may alter the chemical components of plants. Therefore, the aim of this study was to determine the harvesting effects on the chemical composition of L. berteroana from MEABR and OAA sampled during different seasons (spring and fall) and at two sites (Talquilla and Lagunillas) near Coquimbo (30°S), Chile. The crude protein (13.5 ± 1.0%), total lipids (0.9 ± 0.2%), crude fiber (16.3 ± 1.6%), ash (30.1 ± 1.5%), and nitrogen-free extract (39.2 ± 2.0%) contents of L. berteroana were within reference values for Laminariales species. Population descriptors and chemical analyses showed that harvesting had local effects, rather than being affected by a resource management strategy (OAA vs MEABR). The seasonal anticipator nature of L. berteroana may explain the detected seasonality of it's chemical composition. Regarding functional morphological structures, chemical composition in the fronds was more variable than in the stipes and perennial holdfast, probably since leaves are ephemeral structures susceptible to environmental changes and that play a functional, rather than structural, role in kelp. In the context of Chilean kelp resource management, monitoring chemical composition is useful for determining optimal harvesting periods to local scale and for deciding when commercially valuable compounds, such as alginate, should be extracted. These data also complement harvesting pressure indicators based on L. berteroana demographic parameters.


Sign in / Sign up

Export Citation Format

Share Document