scholarly journals Cellular Network Infrastructure: The Future of Fog Monitoring?

2015 ◽  
Vol 96 (10) ◽  
pp. 1687-1698 ◽  
Author(s):  
Noam David ◽  
Omry Sendik ◽  
Hagit Messer ◽  
Pinhas Alpert

Abstract Severe visibility limitations resulting from fog may lead to acute transportation accidents and high losses of property and lives. Thus, reliable monitoring facilities are of extreme importance. Nevertheless, current monitoring instruments suffer from low spatial resolution, high costs, or lack of precision at near-surface levels. It has, however, recently been shown that the commercial microwave links that form the infrastructure of cellular communication networks can provide crucial information regarding the appearance of dense fog and its intensity. Typical microwave systems currently in operation make use of frequencies between 6 and 40 GHz and, thus, can only monitor heavy fog. However, there is a growing demand for high data rates and expanded bandwidth in modern mobile radio networks. As a result, higher frequencies (e.g., around 80 GHz) are being implemented in order to fulfill these increased requirements. Notably, the attenuation induced as a result of fog at a given intensity increases as operating frequency rises, allowing, for the first time, the possibility of using this system to monitor typical fog intensities, at high resolution and low cost. Here, a theoretical simulation is presented in which simulated fog patches are introduced into an area where a network of links is deployed. Two-dimensional maps are generated utilizing the simulated microwave network to represent sensitivity thresholds for fog detection at three different frequencies: 20, 38, and 80 GHz. Real-data measurements of fog are also demonstrated using 38-GHz band links. The results indicate the vast future potential of commercial microwave links as an opportunistic system for monitoring fog.

2014 ◽  
Vol 08 (02) ◽  
pp. 209-227 ◽  
Author(s):  
Håkon Kvale Stensland ◽  
Vamsidhar Reddy Gaddam ◽  
Marius Tennøe ◽  
Espen Helgedagsrud ◽  
Mikkel Næss ◽  
...  

There are many scenarios where high resolution, wide field of view video is useful. Such panorama video may be generated using camera arrays where the feeds from multiple cameras pointing at different parts of the captured area are stitched together. However, processing the different steps of a panorama video pipeline in real-time is challenging due to the high data rates and the stringent timeliness requirements. In our research, we use panorama video in a sport analysis system called Bagadus. This system is deployed at Alfheim stadium in Tromsø, and due to live usage, the video events must be generated in real-time. In this paper, we describe our real-time panorama system built using a low-cost CCD HD video camera array. We describe how we have implemented different components and evaluated alternatives. The performance results from experiments ran on commodity hardware with and without co-processors like graphics processing units (GPUs) show that the entire pipeline is able to run in real-time.


2020 ◽  
Author(s):  
Wiem Abderrahim ◽  
Osama Amin ◽  
Mohamed-Slim Alouini ◽  
Basem Shihada

Next-generation communication networks are expected to integrate newly-used technologies in a smart way to ensure continuous connectivity in rural areas and to alleviate the traffic load in dense regions. The prospective access network in 6G should hinge on satellite systems to take advantage of their wide coverage and high capacity. However, adopting satellites in 6G could be hindered because of the {additional latency introduced}, which is not tolerable by all traffic types. Therefore, we propose a traffic offloading scheme that integrates both the satellite and terrestrial networks to smartly allocate the traffic between them while satisfying different traffic requirements. Specifically, the proposed scheme offloads the Ultra-Reliable Low Latency Communication (URLLC) traffic to the terrestrial backhaul to satisfy its stringent latency requirement. However, it offloads the enhanced Mobile Broadband (eMBB) traffic to the satellite since eMBB needs high data rates but is not always sensitive to delay. Our scheme is shown to reduce the transmission delay of URLLC packets, decrease the number of dropped eMBB packets, and hence improve the network's availability. Our findings highlight that the inter-working between satellite and terrestrial networks is crucial to mitigate the expected high load on the limited terrestrial capacity.<br>


Author(s):  
Ji-Eun Joo ◽  
Haewon Hwang ◽  
Yujin Jeon ◽  
Jaewon Jung ◽  
Yu Hu ◽  
...  

: This paper presents a couple of meal monitoring systems for senile dementia patients by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their families or nurses in charge. Thereby, the nurses can easily spot the most desperate patient to take care of while the families can have relief to see the crucial information for survival of their parents at least three times a day. Meanwhile, the senile dementia patients tend to suffer the burn of their tongues because they can hardly recognize the temperature of hot meals served and therefore avoid the burn of tongues. This phenomenon can be discarded by utilizing the meal temperature monitoring system which displays alarm to the patients when the meal temperature is above the reference. These meal monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino UNO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief not only for the professional nursing nurses working in elder-care hospitals and nursing homes, but also for the families of the dementia patients.


Computation ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
Hira Khalid ◽  
Sajid Sheikh Muhammad ◽  
Hector E. Nistazakis ◽  
George S. Tombras

The hybrid system of free space optic (FSO) and radio frequency (RF) has come forth as alternative good solution for increasing demand for high data rates in wireless communication networks. In this paper, wireless networks with hard-switching between FSO and RF link are analyzed, assuming that at a certain time point either one of the two links are active, with FSO link having higher priority. As the signal-to-noise ratio (SNR) of FSO link falls below a certain selected threshold, the RF link is activated. In this work, it is assumed that the FSO link follows Gamma-Gamma fading due to the atmospheric turbulence effect whereas RF link experiences Rayleigh fading. To analyze the proposed hybrid model, analytical expressions are derived for the outage probability, bit error rate and ergodic capacity. A numerical comparison is also done between the performances of the proposed hybrid FSO/RF model and the single FSO model.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Shivika Rajpal ◽  
Rakesh Goyal

AbstractIn the present paper, radio-over-fiber (RoF) technology has been proposed, which is the integration of the optical and radio networks. With a high transmission capacity, comparatively low cost and low attenuation, optical fiber provides an ideal solution for accomplishing the interconnections. In addition, a radio system enables the significant mobility, flexibility and easy access. Therefore, the system integration can meet the increasing demands of subscribers for voice, data and multimedia services that require the access network to support high data rates at any time and any place inexpensively. RoF has the potentiality to the backbone of the wireless access network and it has gained significant momentum in the last decade as a potential last-mile access scheme. This paper gives the comprehensive review of RoF technology used in the communication system. Concept, applications, advantages and limitations of RoF technology are also discussed in this paper.


2021 ◽  
Author(s):  
Muhammad Salman Bashir ◽  
Ming-Cheng Tsai ◽  
Mohamed-Slim Alouini

Free-space optical (FSO) communications is an important technology that will be used for supporting high data-rates in the backhaul of next generation of wireless communication networks. In this paper, we have compared the probability of error performance of two types of receivers used in FSO today: a receiver based on a single detector, and a receiver based on an array of detectors. The performance of these two receivers is compared for a number of fusion algorithms for an array of detectors such as equal gain combiner (EGC), selection combiner (SC), switched combiner (SWC) and the maximal ratio combiner (MRC). From this study, we conclude that even though the array of detectors adds more noise in the sufficient statistic by virtue of large number of detectors, using more computationally expensive fusion algorithms (such as SC and MRC) can help us achieve a superior probability of error performance as opposed to a single-detector receiver for practical channel conditions. <br>


Author(s):  
Yu Hu ◽  
Ji-Eun Joo ◽  
Eunju Choi ◽  
Leeho Yoo ◽  
Dukyoo Jung ◽  
...  

This paper presents a few meal-monitoring systems for elder residents (especially patients) in LTCFs by using electronic weight and temperature sensors. These monitoring systems enable to convey the information of the amount of meal taken by the patients in real-time via wireless communication networks onto the mobile phones of their nurses in charge or families. Thereby, the nurses can easily spot the most patients who need immediate assistance, while the families can have relief in seeing the crucial information for the well-being of their parents at least three times a day. Meanwhile, the patients tend to suffer burns of their tongues because they can hardly recognize the temperature of hot meals served. This situation can be avoided by utilizing the meal temperature-monitoring system, which displays an alarm to the patients when the meal temperature is above the reference. These meal-monitoring systems can be easily implemented by utilizing low-cost sensor chips and Arduino NANO boards so that elder-care hospitals and nursing homes can afford to exploit them with no additional cost. Hence, we believe that the proposed monitoring systems would be a potential solution to provide a great help and relief for the professional nurses working in elder-care hospitals and nursing homes.


2020 ◽  
Author(s):  
Yiding Lin ◽  
Danhao Ma ◽  
Rui-Tao Wen ◽  
Kwang Hong Lee ◽  
Govindo Syaranamual ◽  
...  

Abstract Photonic-integrated circuits (PICs) have become one of the most promising solutions to the burgeoning global data communication and are being envisioned to have revolutionary impact in many other emerging fields. This outlook requires future PICs to be significantly more broadband and cost-effective. The current germanium (Ge)-based active photonic devices in PICs are thus facing a new bandwidth-cost trade-off. Here, we demonstrate ultra-broadband, high-efficiency Ge photodetectors up to 1,630 nm operation wavelength and Ge0.99Si0.01 electro-absorption (EA) modulator arrays with an operating range of ~100 nm from 1,525 to 1,620 nm, using a CMOS-compatible recess-type silicon nitride (SiNx) stressor. The broadband operation could facilitate a wide (>100 nm) window for low-cost Ge modulator-detector co-integration, requiring only a single step of Ge epitaxy and two different SiNx depositions. The broad modulation and co-integration coverage can be entirely shifted to shorter (~1,300 nm) and longer (>1,700 nm) wavelengths with small amounts of Si or tin (Sn) alloying. This proof-of-concept work provides a pathway for PICs towards future low-cost and high-data-capacity communication networks, immediately accessible by designers through foundries.


2008 ◽  
Vol 8 (3) ◽  
pp. 11673-11684 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapor, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, the proposed method can provide moisture observations at high temporal and spatial resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show excellent correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements).The correlation of the microwave link measurements to those of the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The RMSE were 20.8% and 33.1% for the northern and central site measurements, respectively.


Sign in / Sign up

Export Citation Format

Share Document