scholarly journals Predicting Electrokinetic Coupling and Electrical Conductivity in Fractured Media Using a Bundle of Tortuous Capillary Fractures

Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Dang Thi Minh Hue ◽  
Tran Thi Chung Thuy ◽  
...  

The electrokinetics methods have a great potential to characterize hydrogeological processes in geological media, especially in complex hydrosystems such as fractured formations. In this work, we conceptualize fractured media as a bunch of parallel capillary fractures following the fractal size distribution. This conceptualization permits to obtain analytical models for both the electrical conductivity and the electrokinetic coupling in water saturated fractured media. We explore two different approaches to express the electrokinetic coupling. First, we express the streaming potential coupling coefficient as a function of the zeta potential and then we obtain the effective charge density in terms of macroscopic hydraulic and electrokinetic parameters of porous media. We show that when the surface electrical conductivity is negligible, the proposed models reduces to the previously proposed one based on a bundle of cylindrical capillaries. This model opens up a wide range of applications to monitor the water flow in fractured media.

2021 ◽  
Vol 11 (11) ◽  
pp. 5121
Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Dang Thi Minh Hue ◽  
Tran Thi Chung Thuy ◽  
...  

Electrokinetics methods have attracted increasing interest to characterize hydrogeological processes in geological media, especially in complex hydrosystems such as fractured formations. In this work, we conceptualize fractured media as a bunch of parallel capillary fractures following the fractal size distribution. This conceptualization permits to obtain analytical models for both the electrical conductivity and the electrokinetic coupling in water saturated fractured media. We explore two different approaches to express the electrokinetic coupling. First, we express the streaming potential coupling coefficient as a function of the zeta potential and then we obtain the effective charge density in terms of macroscopic hydraulic and electrokinetic parameters of porous media. We show that when the surface electrical conductivity is negligible, the proposed models reduces to the previously proposed one based on a bundle of cylindrical capillaries. This model opens up a wide range of applications to monitor the water flow in fractured media.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (5) ◽  
pp. 331-335 ◽  
Author(s):  
LEBO XU ◽  
JEREMY MYERS ◽  
PETER HART

Retention of cationic dispersed rosin size was studied via turbidity measurements on stock filtrate with different alum and dispersed rosin size dosages. Stock charge characteristics were analyzed using both an analysis of charge demand determined via a streaming current detector and an evaluation of zeta potential of the fibers by streaming potential measurement. The results indicated that an optimum amount of alum existed such that good sizing retention was maintained throughout a wide range of dispersed rosin size dosages. However, when an excessive amount of alum was used and fines and colloidal particles were transitioned from anionic to cationic, the cationic size retention was reduced. Laboratory results were confirmed with a paper machine trial. All data suggested that a stock charge study was necessary to identify optimal alum dosage for a cationic dispersed rosin sizing program.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


2019 ◽  
Vol 219 (2) ◽  
pp. 866-876 ◽  
Author(s):  
Luong Duy Thanh ◽  
Damien Jougnot ◽  
Phan Van Do ◽  
Nguyen Van Nghia A

SUMMARY Electrical conductivity is one of the most commonly used geophysical method for reservoir and environmental studies. Its main interest lies in its sensitivity to key properties of storage and transport in porous media. Its quantitative use therefore depends on the efficiency of the petrophysical relationship to link them. In this work, we develop a new physically based model for estimating electrical conductivity of saturated porous media. The model is derived assuming that the porous media is represented by a bundle of tortuous capillary tubes with a fractal pore-size distribution. The model is expressed in terms of the porosity, electrical conductivity of the pore liquid and the microstructural parameters of porous media. It takes into account the interface properties between minerals and pore water by introducing a surface conductivity. Expressions for the formation factor and hydraulic tortuosity are also obtained from the model derivation. The model is then successfully compared with published data and performs better than previous models. The proposed approach also permits to relate the electrical conductivity to other transport properties such as the hydraulic conductivity.


1999 ◽  
Vol 104 (B9) ◽  
pp. 20021-20031 ◽  
Author(s):  
A. Revil ◽  
P. A. Pezard ◽  
P. W. J. Glover

2018 ◽  
Vol 40 (2) ◽  
pp. 109-116
Author(s):  
Luong Duy Thanh ◽  
Rudolf Sprik

Streaming potential in rocks is the electrical potential developing when an ionic fluid flows through the pores of rocks. The zeta potential is a key parameter of streaming potential and it depends on many parameters such as the mineral composition of rocks, fluid properties, temperature etc. Therefore, the zeta potential is different for various rocks and liquids. In this work, streaming potential measurements are performed for five rock samples saturated with six different monovalent electrolytes. From streaming potential coefficients, the zeta potential is deduced. The experimental results are then explained by a theoretical model. From the model, the surface site density for different rocks and the binding constant for different cations are found and they are in good agreement with those reported in literature. The result also shows that (1) the surface site density of Bentheim sandstone mostly composed of silica is the largest of five rock samples; (2) the binding constant is almost the same for a given cation but it increases in the order KMe(Na+) < KMe(K+) < KMe(Cs+) for a given rock.References Corwin R. F., Hoovert D.B., 1979. The self-potential method in geothermal exploration. Geophysics 44, 226-245. Dove P.M., Rimstidt J.D., 1994. Silica-Water Interactions. Reviews in Mineralogy and Geochemistry 29, 259-308. Glover P.W.J., Walker E., Jackson M., 2012. Streaming-potential coefficient of reservoir rock: A theoretical model. Geophysics, 77, D17-D43. Ishido T. and Mizutani H., 1981. Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics. Journal of Geophysical Research, 86, 1763-1775. Jackson M., Butler A., Vinogradov J., 2012. Measurements of spontaneous potential in chalk with application to aquifer characterization in the southern UK: Quarterly Journal of Engineering Geology & Hydrogeology, 45, 457-471. Jouniaux L. and T. Ishido, 2012. International Journal of Geophysics. Article ID 286107, 16p. Doi:10.1155/2012/286107. Kim S.S., Kim H.S., Kim S.G., Kim W.S., 2004. Effect of electrolyte additives on sol-precipitated nano silica particles. Ceramics International 30, 171-175. Kirby B.J. and Hasselbrink E.F., 2004. Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis, 25, 187-202. Kosmulski M., and Dahlsten D., 2006. High ionic strength electrokinetics of clay minerals. Colloids and Surfaces, A: Physicocemical and Engineering Aspects, 291, 212-218. Lide D.R., 2009, Handbook of chemistry and physics, 90th edition: CRC Press. Luong Duy Thanh, 2014. Electrokinetics in porous media, Ph.D. Thesis, University of Amsterdam, the Netherlands. Luong Duy Thanh and Sprik R., 2016a. Zeta potential in porous rocks in contact with monovalent and divalent electrolyte aqueous solutions, Geophysics, 81, D303-D314. Luong Duy Thanh and Sprik R., 2016b. Permeability dependence of streaming potential coefficient in porous media. Geophysical Prospecting, 64, 714-725. Luong Duy Thanh and Sprik R., 2016c. Laboratory Measurement of Microstructure Parameters of Porous Rocks. VNU Journal of Science: Mathematics-Physics 32, 22-33. Mizutani H., Ishido T., Yokokura T., Ohnishi S., 1976. Electrokinetic phenomena associated with earthquakes. Geophysical Research Letters, 3, 365-368. Ogilvy A.A., Ayed M.A., Bogoslovsky V.A., 1969. Geophysical studies of water leakage from reservoirs. Geophysical Prospecting, 17, 36-62. Onsager L., 1931. Reciprocal relations in irreversible processes. I. Physical Review, 37, 405-426. Revil A. and Glover P.W.J., 1997. Theory of ionic-surface electrical conduction in porous media. Physical Review B, 55, 1757-1773. Scales P.J., 1990. Electrokinetics of the muscovite mica-aqueous solution interface. Langmuir, 6, 582-589. Behrens S.H. and Grier D.G., 2001. The charge of glass and silica surfaces. The Journal of Chemical Physics, 115, 6716-6721. Stern O., 1924. Zurtheorieder electrolytischendoppelschist. Z. Elektrochem, 30, 508-516. Tchistiakov A.A., 2000. Physico-chemical aspects of clay migration and injectivity decrease of geothermal clastic reservoirs: Proceedings World Geothermal Congress, 3087-3095. Wurmstich B., Morgan F.D., 1994. Modeling of streaming potential responses caused by oil well pumping. Geophysics, 59, 46-56. 


Author(s):  
Luong Duy Thanh

In this work, the fractal model for the streaming potential coefficient in porous media recently published has been examined by calculating the zeta potential from the measured streaming potential coefficient. Obtained values of the zeta potential are then compared with experimental data. Additionally, the variation of the streaming potential coefficient with fluid electrical conductivity is predicted from the model. The results show that the model predictions are in good agreement with the experimental data available in literature. The comparison between the proposed model and the Helmholtz-Smoluchowski (HS) equation is also carried out. It is seen that that the prediction from the proposed model is quite close to what is expected from the HS equation, in particularly at the high fluid conductivity or large grain diameters. Therefore, the model can be an alternative approach to obtain the zeta potential from the streaming potential measurements.


Sign in / Sign up

Export Citation Format

Share Document