scholarly journals MalaSelect: a Selective Culture Medium for Malassezia Species Isolation

Author(s):  
Abdourahim Abdillah ◽  
Stéphane Ranque

Malassezia species are fastidious and slow-growing yeasts whose isolation from polymicrobial samples is hampered by fast-growing microorganisms. Malassezia selective culture media are needed because Malassezia are resistant to cycloheximide, but some fungi, including the chief human commensal Candida albicans resist to this compound. This study aimed to test whether the macrolide rapamycin could be used in combination with cycloheximide to develop a Malassezia-selective culture medium. Rapamycin susceptibility testing was performed via microdilution assays in modified Dixon against M. furfur and five Candida spp. The MIC was the lowest concentration producing 90% growth inhibition. Rapamycin medium ± cycloheximide 500 mg/L was also added to FastFung solid and yeast suspensions were inoculated and incubated for 72h. Rapamycin MICs against Candida spp. ranged from 0.5 to 2 mg/L, except for C. krusei whose MIC was >32 mg/L. M. furfur stains were rapamycin resistant. Rapamycin and cycloheximide supplementation of the FastFung medium effectively inhibited the growth of non-Malassezia yeast, including the cycloheximide-resistant C. albicans and C. tropicalis. Based on our findings, we recommend using this “MalaSelect” medium for Malassezia isolation and culture from polymicrobial samples.

2021 ◽  
Vol 7 (10) ◽  
pp. 824
Author(s):  
Abdourahim Abdillah ◽  
Stéphane Ranque

Malassezia species are fastidious and slow-growing yeasts in which isolation from polymicrobial samples is hampered by fast-growing microorganisms. Malassezia selective culture media are needed. Although cycloheximide is often used, some fungi, including the chief human commensal Candida albicans, are resistant to this compound. This study aimed to test whether the macrolide rapamycin could be used in combination with cycloheximide to develop a Malassezia-selective culture medium. Rapamycin susceptibility testing was performed via microdilution assays in modified Dixon against two M. furfur and five Candida spp. The MIC was the lowest concentration that reduced growth by a minimum of 90%. Rapamycin ± cycloheximide 500 mg/L was also added to FastFung solid, and yeast suspensions were inoculated and incubated for 72 h. Rapamycin MICs for Candida spp. ranged from 0.5 to 2 mg/L, except for C. krusei, for which the MIC was > 32 mg/L. M. furfur stains were rapamycin-resistant. Rapamycin and cycloheximide supplementation of the FastFung medium effectively inhibited the growth of non-Malassezia yeast, including cycloheximide-resistant C. albicans and C. tropicalis. Based on our findings, this “MalaSelect” medium should be further evaluated on polymicrobial samples for Malassezia isolation and culture.


1999 ◽  
Vol 43 (1) ◽  
pp. 100-105 ◽  
Author(s):  
Osamu Shimokawa ◽  
Hiroaki Nakayama

ABSTRACT Candida albicans is a fungus thought to be viable in the presence of a deficiency in sterol 14α-demethylation. We showed in a strain of this species that the deficiency, caused either by a mutation or by an azole antifungal agent, made the cells susceptible to growth inhibition by acetate included in the culture medium. Studies with a mutant demonstrated that the inhibition was complete at a sodium acetate concentration of 0.24 M (20 g/liter) and was evident even at a pH of 8, the latter result indicating the involvement of acetate ions rather than the undissociated form of acetic acid. In fluconazole-treated cells, sterol profiles determined by thin-layer chromatography revealed that the minimum sterol 14α-demethylation-inhibitory concentrations (MDICs) of the drug, thought to be the most important parameter for clinical purposes, were practically identical in the media with and without 0.24 M acetate and were equivalent to the MIC in the acetate-supplemented medium. The acetate-mediated growth inhibition of azole-treated cells was confirmed with two additional strains of C. albicans and four different agents, suggesting the possibility of generalization. From these results, it was surmised that the acetate-containing medium may find use in azole susceptibility testing, for which there is currently no method capable of measuring MDICs directly for those fungi whose viability is not lost as a result of sterol 14α-demethylation deficiency. Additionally, the acetate-supplemented agar medium was found to be useful in detecting reversions from sterol 14α-demethylation deficiency to proficiency.


1971 ◽  
Vol 17 (7) ◽  
pp. 851-856 ◽  
Author(s):  
D. N. Mardon ◽  
I. S. K. Hurst ◽  
E. Balish

Candida albicans formed germ tubes within 3 h at 37C in a glucose–salts–biotin (GSB) medium containing L-alpha-amino-n-butyric acid as the nitrogen source. Optimal germ-tube production was obtained when the inoculum was grown on Sabouraud dextrose agar. The GSB medium containing L-alpha-amino-n-butyric acid promoted germ-tube formation more effectively than GSB medium plus gamma-amino-butyric acid or Sabouraud dextrose broth.Carbon-14 incorporation studies revealed that during germ-tube formation (0–4 h) the 3 carbon of alpha-amino-n-butyric acid was incorporated intracellularly to a greater extent than the 1 carbon. However, during blastospore formation (5–16 h), this difference was less pronounced.When six other Candida species were grown in GSB plus L-alpha-amino-n-butyric acid medium, few germ tubes were observed with the exception of one Candida stellatoidea strain. However, even this strain of C. stellatoidea produced far fewer germ tubes in this minimal culture medium than any strain of C. albicans tested.


2015 ◽  
Vol 53 (11) ◽  
pp. 3654-3659 ◽  
Author(s):  
Maria Siopi ◽  
Marilena Tsala ◽  
Nikolaos Siafakas ◽  
Loukia Zerva ◽  
Joseph Meletiadis

The “dip effect” phenomenon complicates antifungal susceptibility testing with gradient concentration strips. Of 60Candidaisolates tested with the three echinocandins, this phenomenon was observed only for caspofungin with most (>90%)Candida albicans,Candida glabrata, andCandida tropicalisisolates and for isolates with CLSI MICs of ≤0.25 mg/liter. In order to facilitate MIC determination, a practical approach was developed using the inhibition zones at 32, 8, 2, and 1 mg/liter, increasing the agreement with the CLSI method >86%.


2016 ◽  
Vol 48 (4) ◽  
Author(s):  
Ana Cláudia Nascimento Silva ◽  
Antônio Alexandre de Vasconcelos Júnior ◽  
Francisco Afrânio Cunha ◽  
Maria da Conceição dos S. O. Cunha ◽  
Everardo Albuquerque Menezes

Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


2021 ◽  
Vol 17 ◽  
pp. 174550652110314
Author(s):  
Pamela Douglas

Background: Breastfeeding mothers commonly experience nipple pain accompanied by radiating, stabbing or constant breast pain between feeds, sometimes associated with pink shiny nipple epithelium and white flakes of skin. Current guidelines diagnose these signs and symptoms as mammary candidiasis and stipulate antifungal medications. Aim: This study reviews existing research into the relationship between Candida albicans and nipple and breast pain in breastfeeding women who have been diagnosed with mammary candidiasis; whether fluconazole is an effective treatment; and the presence of C. albicans in the human milk microbiome. Method: The author conducted three searches to investigate (a) breastfeeding-related pain and C. albicans; (b) the efficacy of fluconazole in breastfeeding-related pain; and (c) composition of the human milk mycobiome. These findings are critiqued and integrated in a narrative review. Results: There is little evidence to support the hypothesis that Candida spp, including C. albicans, in maternal milk or on the nipple-areolar complex causes the signs and symptoms popularly diagnosed as mammary candidiasis. There is no evidence that antifungal treatments are any more effective than the passage of time in women with these symptoms. Candida spp including C. albicans are commonly identified in healthy human milk and nipple-areolar complex mycobiomes. Discussion: Clinical breastfeeding support remains a research frontier. The human milk microbiome, which includes a mycobiome, interacts with the microbiomes of the infant mouth and nipple-areolar complex, including their mycobiomes, to form protective ecosystems. Topical or oral antifungals may disrupt immunoprotective microbial homeostasis. Unnecessary use contributes to the serious global problem of antifungal resistance. Conclusion: Antifungal treatment is rarely indicated and prolonged courses cannot be justified in breastfeeding women experiencing breast and nipple pain. Multiple strategies for stabilizing microbiome feedback loops when nipple and breast pain emerge are required, in order to avoid overtreatment of breastfeeding mothers and their infants with antifungal medications.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 378
Author(s):  
Van-Tuyen Le ◽  
Samuel Bertrand ◽  
Thibaut Robiou du Pont ◽  
Fabrice Fleury ◽  
Nathalie Caroff ◽  
...  

Very little is known about chemical interactions between fungi and their mollusc host within marine environments. Here, we investigated the metabolome of a Penicillium restrictum MMS417 strain isolated from the blue mussel Mytilus edulis collected on the Loire estuary, France. Following the OSMAC approach with the use of 14 culture media, the effect of salinity and of a mussel-derived medium on the metabolic expression were analysed using HPLC-UV/DAD-HRMS/MS. An untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA) and molecular networking (MN). It highlighted some compounds belonging to sterols, macrolides and pyran-2-ones, which were specifically induced in marine conditions. In particular, a high chemical diversity of pyran-2-ones was found to be related to the presence of mussel extract in the culture medium. Mass spectrometry (MS)- and UV-guided purification resulted in the isolation of five new natural fungal pyran-2-one derivatives—5,6-dihydro-6S-hydroxymethyl-4-methoxy-2H-pyran-2-one (1), (6S, 1’R, 2’S)-LL-P880β (3), 5,6-dihydro-4-methoxy-6S-(1’S, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (4), 4-methoxy-6-(1’R, 2’S-dihydroxy pent-3’(E)-enyl)-2H-pyran-2-one (6) and 4-methoxy-2H-pyran-2-one (7)—together with the known (6S, 1’S, 2’S)-LL-P880β (2), (1’R, 2’S)-LL-P880γ (5), 5,6-dihydro-4-methoxy-2H-pyran-2-one (8), (6S, 1’S, 2’R)-LL-P880β (9), (6S, 1’S)-pestalotin (10), 1’R-dehydropestalotin (11) and 6-pentyl-4-methoxy-2H-pyran-2-one (12) from the mussel-derived culture medium extract. The structures of 1-12 were determined by 1D- and 2D-MMR experiments as well as high-resolution tandem MS, ECD and DP4 calculations. Some of these compounds were evaluated for their cytotoxic, antibacterial, antileishmanial and in-silico PTP1B inhibitory activities. These results illustrate the utility in using host-derived media for the discovery of new natural products.


Sign in / Sign up

Export Citation Format

Share Document