scholarly journals Feasibility of Remediation Lead, Nickel, Zinc, Copper and Cadmium Contaminated Groundwater by Calcium Sulfide

Author(s):  
Chin-Yuan Huang ◽  
Pei-Cheng Cheng ◽  
Jih-Hsing Chang ◽  
Yu-Chih Wan ◽  
Xiang-Min Hong ◽  
...  

Heavy metals contamination in groundwater often occurs in various industrial processes. Stud-ies have confirmed that polysulfide could reduce hexavalent chromium to trivalent chromium, achieving the effect of in-situ stabilization. For other heavy metals contamination in groundwa-ter, whether polysulfide also had a stabilizing ability to achieve in-situ remediation. This re-search focused on heavy metals except for chromium that often contaminated in groundwater, including lead, nickel, zinc, copper, and cadmium to explore the feasibility of using calcium polysulfide (CaSx) as an in-situ stabilization technology for these heavy metals contamination groundwater. Results showed that CaSx had a great removal efficiency for heavy metals lead, nickel, zinc, copper, and cadmium. However, for nickel, zinc, copper and cadmium, when CaSx was added excessively, complexes would be formed, causing the result of re-dissolve and this would also reduce the removal efficiency. Since it is difficult to accurately control the dosage of agents for in-situ groundwater remediation, the concentration of re-dissolved nickel, zinc, cop-per, and cadmium may not be able to meet the groundwater control standards. CaSx had high lead removal efficiency, and it would not cause re-dissolution due to excessive CaSx dosing. CaSx can be used as an in-situ stabilization technique for lead contaminated groundwater.

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2266
Author(s):  
Chin-Yuan Huang ◽  
Pei-Cheng Cheng ◽  
Jih-Hsing Chang ◽  
Yu-Chih Wan ◽  
Xiang-Min Hong ◽  
...  

Metal contamination in groundwater often occurs in various industrial processes. Studies have confirmed that polysulfide could reduce hexavalent chromium to trivalent chromium, achieving the effect of in situ stabilization. For other metal contamination in groundwater, whether polysulfide also had a stabilizing ability to achieve in situ remediation. This research focused on metals in addition to chromium that often contaminated groundwater, including lead, nickel, zinc, copper, and cadmium, to explore the feasibility of using calcium polysulfide (CaSx) as an in situ stabilization technology for these metals’ contamination of groundwater. Results showed that CaSx had a great removal efficiency for metals lead, nickel, zinc, copper, and cadmium. However, for nickel, zinc, copper, and cadmium, when CaSx was added excessively, complexes would be formed, causing the result of re-dissolution, in turn reducing the removal efficiency. As it is difficult to accurately control the dosage of agents for in situ groundwater remediation, the concentration of re-dissolved nickel, zinc, copper, and cadmium may not be able to meet the groundwater control standards. CaSx had high lead removal efficiency and for a concentration of 100 mg/L, the dose of calcium polysulfide was more than the amount of 1/1200 (volume ratio of CaSx to groundwater). In addition, the removal rate was almost 100% and it would not cause re-dissolution due to excessive CaSx dosing. CaSx can be used as an in situ stabilization technique for lead-contaminated groundwater.


2016 ◽  
Vol 17 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Tongyan Li ◽  
Wenqi Li ◽  
Chuanping Feng ◽  
Weiwu Hu

A simulation apparatus of in-situ groundwater remediation (SAIR) that used maize stalks pretreated with sodium hydroxide (MSSH) as a carbon source was designed for nitrate-contaminated groundwater treatment. Two experiments, RA and RB, were constructed in this SAIR. The removal performance of SAIR fed with real nitrate contaminated water was investigated under static and dynamic conditions. In the static remediation experiment, good removal efficiency (>95% for nitrate, 89% for total nitrogen) was observed in both experiments. However, nitrate removal efficiency did not differ greatly between RA and RB at a hydraulic retention time (HRT) of 15 d. Overall, these results indicate that MSSH has potential for use as an alternative carbon source for denitrification.


2020 ◽  
Vol 58 (5A) ◽  
pp. 22
Author(s):  
Dao Thanh Son ◽  
Van Tai Nguyen ◽  
Thuy Nhu Quynh Vo ◽  
Vinh Quang Tran ◽  
Thi My Chi Vo ◽  
...  

Heavy metal contamination is among the globally environmental and ecological concerns. In this study we assessed the development of the two green algae Schroederia setigera and Selenastrum bibraianum under exposures to 5 – 200 µg/L of Ni, Zn, and Cd in the laboratory conditions. Heavy metal removal efficiency of S. setigera was also tested in 537 µg Ni/L, 734 µg Zn/L, and 858 µg Cd/L. We found that the exposures with these heavy metals caused inhibitory on the growth of S. bibraianum. The S. bibraianum cell size in the 200 µg Zn/L treatment was around two times smaller than the control. However, Zn and Cd at the concentration of 200 µg/L did not inhibit the growth of S. setigera over 18 days of exposure. The S. setigera also grew well during 8 days exposed to Ni at the same concentration. Besides, the alga S. setigera could remove 66% of Zn, 18% of Cd and 12% of Ni out of the test medium after 16 days of incubation. The Vietnam Technical Regulation related to metals should be considered for ecological protection. We recommend to test the metal removal by the alga S. setigera at pilot scale prior to apply it in situ


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1574 ◽  
Author(s):  
Abdullah Alkhudhiri ◽  
Mohammed Hakami ◽  
Myrto-Panagiota Zacharof ◽  
Hosam Abu Homod ◽  
Ahmed Alsadun

Synthetic industrial wastewater samples containing mercury (Hg), arsenic (As), and lead (Pb) ions in various concentrations were prepared and treated by air gap membrane distillation (AGMD), a promising method for heavy metals removal. Three different membrane pore sizes (0.2, 0.45, and 1 μm) which are commercially available (TF200, TF450, and TF1000) were tested to assess their effectiveness in combination with various heavy metal concentrations and operating parameters (flow rate 1–5 L/min, feed temperature 40–70 °C, and pH 2–11). The results indicated that a high removal efficiency of the heavy metals was achieved by AGMD. TF200 and TF450 showed excellent membrane removal efficiency, which was above 96% for heavy metal ions in a wide range of concentrations. In addition, there was no significant influence of the pH value on the metal removal efficiency. Energy consumption was monitored at different membrane pore sizes and was found to be almost independent of membrane pore size and metal type.


2015 ◽  
Vol 159 ◽  
pp. 1-7 ◽  
Author(s):  
Farmanullah Khan ◽  
Mohammad Jamal Khan ◽  
Abdus Samad ◽  
Yousaf Noor ◽  
Muhammad Rashid ◽  
...  

NANO ◽  
2008 ◽  
Vol 03 (04) ◽  
pp. 287-289 ◽  
Author(s):  
STEPANKA KLIMKOVA ◽  
MIROSLAV CERNIK ◽  
LENKA LACINOVA ◽  
JAROSLAV NOSEK

It is known that the reductive effects of zero-valent iron ( Fe 0) and the sorptive capability of iron and its oxides can be used for both the dehalogenation of chlorinated hydrocarbons (CHC), especially of chlorinated ethenes (PCE → TCE → DCE → VC → ethene, ethane), and the removing of heavy metals from groundwater by turning them into a less-soluble form through changes of their oxidation state, or by adsorption. These consequences are being exploited in the construction of iron filling permeable reactive barriers for a longer time.1 The advantages of nanoscale zero-valent iron ( nanoFe 0) over the macroscopic one consist not only in the better reactivity implicit in their greater specific surface area but also in their mobility in rock environment.2,3 Numerous laboratory experiments, especially the batch-agitated experiments, with samples from seven various contaminated localities in Europe have been carried out with the aim to discover the measurement of the reductive effect of the nanoFe 0 on selected contaminants. It was found that the nanoFe 0 can be reliably usable as a reductive reactant for in-situ chemical decontamination of sites polluted by chlorinated ethenes (CEs), or hexa-valent chromium ( Cr VI ). The rate of reductive reaction and the optimal concentrations for the real remediation action were determined. On the basis of these laboratory experiments, the methods for pilot application of nanoFe 0 have been specified. Subsequently the pilot experiments were accomplished in surveyed localities.


2021 ◽  
Vol 11 (16) ◽  
pp. 7437
Author(s):  
Sounghyun Lee ◽  
Jung-Mann Yun ◽  
Jong-Young Lee ◽  
Gigwon Hong ◽  
Ji-Sun Kim ◽  
...  

Most food waste is incinerated and reclaimed in Korea. Due to the development of industry, soil and groundwater pollution are serious. The purpose of this study was to study recycled materials and eco-friendly remediation methods to prevent secondary pollution after remediation. In this study, recycled food waste ash was filled in a permeable reactive barrier (PRB) and used as a heavy metal adsorption material. In situ remediation electrokinetic techniques (EK) and acetic acid were used. Electrokinetic remediation is a technology that can remove various polluted soils and pollutants, and is an economical and highly useful remediation technique. Thereafter, the current density increased constantly over time, and it was confirmed that it increased after electrode exchange and then decreased. Based on this result, the acetic acid was constantly injected and it was reconfirmed through the water content after the end of the experiment. In the case of both heavy metals, the removal efficiency was good after 10 days of operation and 8 days after electrode exchange, but, in the case of lead, it was confirmed that experiments are needed by increasing the operation date before electrode exchange. It was confirmed that the copper removal rate was about 74% to 87%, and the lead removal rate was about 11% to 43%. After the end of the experiment, a low pH was confirmed at x/L = 0.9, and it was also confirmed that there was no precipitation of heavy metals and there was a smooth movement by the enhancer and electrolysis after electrode exchange.


2009 ◽  
Vol 71-73 ◽  
pp. 577-580 ◽  
Author(s):  
Maylin Almendras ◽  
J.V. Wiertz ◽  
R. Chamy

The main environmental problems associated with the mining activities are related to the production of large amounts of wastes; Different pathways are responsible for heavy metals dispersion, by air due to wind action, by water mediated by acid mine drainage and erosion, and the metals could be mobilized in the soil by different transport mechanisms. Different remediation alternatives have been studied and reported in literature. In situ stabilization is a cheaper method. The heavy metals stabilization enables the decrease of metal mobility, reactivity and toxicity in the soil, decreasing heavy metals availability and phytoavailability. Sulphate reducing bacteria (SRB) have been successfully utilized in groundwater bioprecipitation of heavy metals. In this study, this biological agent has been used in the immobilization of heavy metal in the subsurface of the soil due to its dissimilative metabolism. SRB produces hydrogen sulfide that reacts with soluble metals present in the media, generating as final product low soluble metal compounds (metal sulfides). The bio-stabilization was studied at pilot scale to determine the stabilization efficiency using biological agent, SRB. The metals studied were Fe, Cu, Pb and Zn in the contaminated smelter soil. Bioaugmentation and biomagnification were applied. After 4 months, the metal stabilization efficiency was determined by leaching with acid solution at different pH to stimulate the metal mobility. The remediation pilot scale system showed that copper, lead and iron were much more stable at pH 3.0, with only 3.7% and 1% of total metal eluted, and compared with the system without biological agent. In the case of zinc, the elution was similar with or without remediation. The metal stabilization using biological agent was successful in the contaminated smelter soil and these results are promising antecedents for full scale in situ remediation strategy.


Sign in / Sign up

Export Citation Format

Share Document